
Journal of Artificial Intelligence Research 70 (2021) 1117-1181 Submitted 11/2020; published 03/2021

Lilotane: A Lifted SAT-Based Approach
to Hierarchical Planning

Dominik Schreiber dominik.schreiber@kit.edu

Karlsruhe Institute of Technology, Kaiserstraße 12

76131 Karlsruhe, Germany

Abstract

One of the oldest and most popular approaches to automated planning is to encode the
problem at hand into a propositional formula and use a Satisfiability (SAT) solver to find
a solution. In all established SAT-based approaches for Hierarchical Task Network (HTN)
planning, grounding the problem is necessary and oftentimes introduces a combinatorial
blowup in terms of the number of actions and reductions to encode. Our contribution
named Lilotane (Lifted Logic for Task Networks) eliminates this issue for Totally Ordered
HTN planning by directly encoding the lifted representation of the problem at hand. We
lazily instantiate the problem hierarchy layer by layer and use a novel SAT encoding which
allows us to defer decisions regarding method arguments to the stage of SAT solving. We
show the correctness of our encoding and compare it to the best performing prior SAT
encoding in a worst-case analysis. Empirical evaluations confirm that Lilotane outper-
forms established SAT-based approaches, often by orders of magnitude, produces much
smaller formulae on average, and compares favorably to other state-of-the-art HTN plan-
ners regarding robustness and plan quality. In the International Planning Competition
(IPC) 2020, a preliminary version of Lilotane scored the second place. We expect these
considerable improvements to SAT-based HTN planning to open up new perspectives for
SAT-based approaches in related problem classes.

1. Introduction

Over the last decades, an advanced paradigm in domain-independent automated planning
titled Hierarchical Planning has gained traction and high popularity among researchers
and users alike (Georgievski & Aiello, 2015; Bercher, Alford, & Höller, 2019). Hierarchical
planning and, specifically, its most noteworthy realization called Hierarchical Task Network
(HTN) planning enrich a planning domain with hierarchical expert knowledge which re-
sults in better guidance for planners and in well-structured and intuitive plans. In 2020
this collective interest in hierarchical planning resulted in the first International Planning
Competition (IPC) for HTN Planning taking place (Behnke, Bercher, & Höller, 2020b).

In addition to operators known from classical planning which are templates for valid
atomic manipulations of the world state, HTN planning additionally features tasks which
provide an abstract notion of something that needs to be achieved, and methods which
provide conditional “recipes” for decomposing a specific task into smaller tasks. In an
HTN planning problem, a number of initial tasks are successively decomposed by applicable
methods under the notion of stepwise refinement until the resulting tasks can be achieved by
primitive operators. In this work we focus on a highly popular subclass where the subtasks
of every method are totally ordered, named Totally Ordered HTN (TOHTN) planning.

©2021 AI Access Foundation. All rights reserved.

Schreiber

Among various established algorithms to resolve HTN planning problems as efficiently
as possible, one popular approach is to reduce the problem to propositional satisfiabiliy
(SAT). First, the HTN planning problem at hand is transformed into an easier to handle
representation through a preprocessing stage called grounding which instantiates all pos-
sible (i.e., reachable) argument combinations of each operator and each method. Then,
the structurally simpler ground problem is encoded into a sequence of propositional logic
formulae and handed to a SAT solver. Eventually, if the problem is solvable then at some
point a satisfying assignment will be found and can be decoded into a plan. This planning
approach, after two decades of inactivity since its initial proposal (Mali & Kambhampati,
1998), recently received a significant amount of attention. On the one hand, new techniques
for much more compact SAT encodings were found (Behnke, Höller, & Biundo, 2018, 2019a,
2019b; Schreiber, Pellier, Fiorino, & Balyo, 2019a; Schreiber, Pellier, Fiorino, et al., 2019b)
while on the other hand new grounding approaches (Ramoul, Pellier, Fiorino, & Pesty,
2017; Behnke, Höller, Schmid, Bercher, & Biundo, 2020) serve as a catalyst to improve on
SAT-based approaches, not only speeding up the processing of a planning description but
also leading to smaller encodings and therefore better performance.

Wherever SAT solving has been employed for HTN planning before, the procedure
of grounding was considered an obvious, unavoidable and essential stage to be done in
advance. Encoding the problem on the basis of a ground representation has in fact various
merits: The structures which result from grounding are logically much simpler than the
lifted representation, and invalid parts of search space can be detected beforehand, hence
they do not need to be encoded.

However, as a correct grounding procedure must enumerate all instantiations of opera-
tors and methods that may be part of a plan, grounding implies a combinatorial blowup in
the worst case: Some planning problems inevitably result in a huge ground representation if
all possibly useful parameter combinations for operators are collected. As such, grounding
can also be a very heavyweight task and become a bottleneck for the whole planning pro-
cedure in terms of run time and memory footprint (e.g., Wichlacz, Torralba, & Hoffmann,
2019). For these reasons, planners which rely on a ground representation may fail to scale
to large problems when compared to lifted planners which do not perform any grounding,
especially on logically simple problems which lead to a huge ground representation.

With our contributions, we circumvent the problems tied to grounding for TOHTN
planning by designing a lifted SAT-based approach that omits this phase of the planning
procedure. To our knowledge we are the first to explore a lifted SAT encoding for hierarchi-
cal planning: Our approach Lilotane (’lı·lo·teın, Lifted Logic for Task Networks) generates
an incremental sequence of propositional formulae from a lifted TOHTN problem descrip-
tion by instantiating operators and methods in a lazy manner and keeping free arguments
where appropriate. As such, Lilotane defers any non-trivial argument substitution choices
up until the stage of SAT solving and therefore follows the well-known least-commitment
principle which suggests to defer a planner’s decisions for as long as possible (Weld, 1994).

This greatly affects our planning approach as a whole: In addition to the obvious merit
of omitting the stage of grounding, our encoding does not suffer from any combinatorial
blowup with respect to the input size, promising much smaller encodings. This reduction
of the encoding size, again, has an immediate effect on run times – fewer clauses need
to be computed and handed to the SAT solver – and leads to shorter solving times and

1118

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

a reduced memory footprint. In terms of plan quality, we improve on the anytime plan
improvement approach proposed by Schreiber et al. (2019b): We employ incremental SAT
solving to iteratively tighten the bounds on possible plan lengths at a certain depth and
obtain successively shorter plans in the process.

In extensive evaluations we find that our planning approach outperforms state-of-the-art
SAT-based HTN planners by more than one order of magnitude on the majority of instances
and in most cases produces much smaller SAT encodings of TOHTN planning problems
which, in turn, leads to a considerably smaller memory footprint. Lilotane also compares
favorably to other state-of-the-art HTN planners: A preliminary version of Lilotane partici-
pated in the IPC 2020 and scored the second place. We analyze the results and evaluate the
current version of Lilotane against the IPC winner, concluding that Lilotane often requires
more time to find solutions but nevertheless is an appealing engine for TOHTN planning
based on its robustness and effective quality awareness. Moreover, by showing in theory
and practice that SAT-based HTN planning does not necessarily rely on grounding in order
to be efficient, we open up new perspectives for scalable SAT-based planning.

The paper is structured as follows: First, in Chapter 2 we provide a problem definition
and introduce important concepts of HTN planning and SAT solving. We then discuss
previous work with a focus on grounding and SAT-based approaches in Chapter 3. Chapter 4
provides an overview on our planning approach and describes its different components as
well as a number of optimizations and improvements. Chapter 5 features the complete
propositional logic encoding we employ as well as a proof of correctness and a worst-case
analysis of the number of variables and clauses in the encoding. We present an anytime
plan improvement technique for our approach in Chapter 6. In Chapter 7 we evaluate
our approach, first in the scope of SAT-based approaches and then in the scope of HTN
planning in general. We also discuss the results of the IPC in this chapter. A conclusion
and an outlook follow in Chapter 8.

2. Preliminaries

In this chapter we introduce the necessary preliminaries for presenting our contributions.

2.1 TOHTN Planning

In the past, several formalisms for HTN planning of differing expressive power have been
introduced (see Erol, Hendler, & Nau, 1996; Alford, Bercher, & Aha, 2015). We adapt and
refine the model used by Schreiber et al. (2019b) as their work provides the foundation
for our approach. In terms of expressiveness, this notation is equivalent to TOHTN plan-
ning with variables as specified by Alford et al. (2015) and compatible with the TOHTN
formalism used in the International Planning Competition 2020 (Behnke et al., 2020b).

2.1.1 HTN Structures

We begin with some basic definitions. A constant c ∈ C is an atomic symbol from some
domain C. A signature σ(a1, . . . , ak) is a syntactical construct consisting of a name σ and
a list of k ≥ 0 arguments. Thereby k is fixed for each σ; we call k the arity of σ. Each
argument ai is either a constant or a variable; a variable acts as a placeholder for a constant.

1119

Schreiber

The possible domain of each ai of σ is limited to some fixed subset τi ⊆ C of constants,
the type of the i-th argument of σ. We call a signature ground if all of its arguments are
constants, i.e., ∀i ∈ {1, . . . , k} : ai ∈ C. We call a signature lifted if it is not ground. We
use the term free arguments to refer to any variables left in a signature.

Predicates are special signatures which represent propositions, i.e., logical atoms, of the
world state of our problem. A literal is a predicate supplied with a polarity (positive or
negative). For any set s of literals, we define s+ := {p ∈ s | p is positive} and s− :=
{¬p | p ∈ s, p is negative}.

A fact is a ground literal. A state s is a set of positive facts. When we interpret a state
s as the world state of a planning problem, in accordance to the closed-world assumption
(see Reiter, 1981) we postulate that every fact not contained in s is negative.

A task is a non-predicate signature t(a1, . . . , ak) and, in itself, a purely syntactical
footprint of something that needs to be achieved. An operator o = (sig(o), pre(o), eff(o)) is
a tuple of a task sig(o) and two sets pre(o), eff(o) of literals whose arguments are arguments
of sig(o). An action is an operator o where sig(o) is ground.

A method is a tuple m = (sig(m), task(m), pre(m), subtasks(m)) where sig(m) is a non-
predicate signature, task(m) is a task, pre(m) is a set of literals, subtasks(m) = 〈t1, . . . , tj〉
is a sequence of j ≥ 0 tasks, and all arguments in task(m), pre(m), and subtasks(m) are
arguments of sig(m). A reduction is a method m where sig(m) is ground. Note that in
general HTN planning, subtasks(m) is not a sequence but rather a set of tasks supplied
with a precedence relation. We will not pursue this more general case any further but
restrict subtasks to be totally ordered, hence the name Totally Ordered HTN planning.

We use the term operation to refer to an object that is either an action or a reduction.

Operators and methods are “recipes” to achieve an existing task, either by applying a
matching operator that alters the world state or by replacing the task with the subtasks
of a matching method. In both cases, the structures’ preconditions pre(·) need to hold in
the world state immediately before this refinement is performed. Given a method m for
some task t such that task(m) = t, we say that m matches t and that t is compound. Given
an operator o for some task t such that sig(o) = t, we say that o matches t and that t is
primitive. Every task we consider in a problem is either compound or primitive.

2.1.2 Problem Definition

A TOHTN domain (Totally Ordered Hierarchical Task Network) D = (C,P,O,M) consists
of constants C, predicates P , operators O, and methods M . The domain’s actions A and
reductions R are defined as the result of exhaustively substituting the arguments in each
operator/method with all possible combinations of constants.

A TOHTN problem Π = (D, sI , T) consists of a TOHTN domain D, initial state sI ,
and initial task network T . Thereby sI is a state and T is a list of ground tasks. In the
following, let “◦” denote the concatenation of two sequences.

Definition 1. A sequence of actions π is a solution to a TOHTN problem Π = (D, sI , T)
iff one of the following cases holds and the resulting recursion is well-defined.

1. (Base case.) π = 〈〉 and T = 〈〉.

1120

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

2. (Applying a reduction.) T = 〈t〉 ◦ T ′, t = sig(r) for some r ∈ R, pre+(r) ⊆ sI ,
pre−(r) ∩ sI = ∅, and π is a solution to Π′ := (D, sI , subtasks(r) ◦ T ′).

3. (Applying an action.) T = 〈t〉 ◦ T ′, t = sig(a) for some a ∈ A, pre+(a) ⊆ sI ,
pre−(a)∩sI = ∅, and π′ := 〈a〉◦π is a solution to Π′ := (D, (sI \eff−(a))∪eff+(a), T ′).

Note that this definition directly provides a recursive algorithm to resolve a TOHTN
problem – popular progression search planners such as SHOP (Nau, Cao, Lotem, & Munoz-
Avila, 1999) are essentially refinements of this algorithm. Alternative 1 solves the empty
problem where there is nothing to achieve (T = 〈〉) hence no actions are performed (π = 〈〉).
In alternative 2, a reduction r is applied which matches the current first task and whose
preconditions hold in s: The matched task is replaced with the subtasks of r. In alternative
3, an action a is applied which matches the current first task and whose preconditions hold
in s: a is appended to the plan, its effects are applied to the current state, and the matched
task is removed from the list of tasks yet to achieve.

The decisions left to a planner which follows the above algorithm are limited to picking
a reduction whenever the second case is encountered. This includes both the decision for
a particular method and the choice of substitutions that ground the method into a fitting
reduction. The third case does not induce any decisions: the tasks in T are invariantly
ground, so there can only be one particular action matching any given task t ∈ T .

To understand, reproduce, and verify a solution, it should not only contain a flat se-
quence of actions but the full trace leading to this plan, which we define as follows:

Definition 2. A directed tree H = (V,E) with a total node ordering relation ≺ ⊆ V × V
is a hierarchical solution to a problem Π iff (1)–(3) hold.

(1) Each leaf node v corresponds to some action av ∈ A, and each inner node v corre-
sponds to some reduction rv ∈ R. In particular, the root node v̂ corresponds to the
initial reduction, i.e., a reduction r0 with subtasks(r0) = T .

(2) If an inner node u has k outgoing edges (u, v1), . . . , (u, vk), sorted such that vi ≺ vj if
i < j, each vi corresponds to an operation which matches the i-th subtask of ru.

(3) Let Ω := 〈o1, o2, . . . , ok〉 be a sequence of operations which results from a depth-first
traversal of H beginning from v̂ and using ≺ as an ordering. Specifically, if node
v is visited, its corresponding operation is appended to Ω and all children of v are
added according to “≺” to the frontier of nodes to visit (i.e., v1 is visited before v2 if
v1 ≺ v2). Then there is a sequence of actions π such that (A) holds:

(A) π is a solution for Π according to Def. 1 where either case 1 applies or case 2
with r := o1 applies or case 3 with a := o1 applies; and in the two latter cases, (A)
holds recursively for the resulting π′, the resulting Π′, and for Ω′ := 〈o2, . . . , ok〉.

Essentially, Def. 2 defines data structure H as a witness for a particular “path” to take
through Def. 1 to obtain the given classical solution π. In particular, π can be read from H
just by enumerating all leaf nodes in H according to ≺. The structure of H closely resembles
the plan output format (Behnke, Bercher, & Höller, 2020a) required for the International
Planning Competition 2020, and H can be transformed easily into this desired output.

1121

Schreiber

Erol, Hendler, and Nau (1994) showed that general HTN planning is a strictly semi-
decidable problem. By contrast, their findings also include that TOHTN planning is de-
cidable due to its more rigid and predictable structure. Notably, the property that makes
TOHTN planning decidable is that it prevents arbitrary interleavings of subtasks. However,
Alford et al. (2015) have shown that TOHTN planning in our setting, i.e., with variables,
is 2-EXPTIME-complete and as such conjectured to be strictly more difficult than classical
automated planning (which Bylander, 1994 showed to be PSPACE-complete).

2.1.3 Input Definition

Our planner accepts planning problems in the form of HDDL (Hierarchical Domain De-
scription Language) files. HDDL has been proposed recently to consolidate a common
input language for hierarchical planning (Höller, Behnke, Bercher, Biundo, Fiorino, Pellier,
& Alford, 2020) and was used for the IPC 2020 (Behnke et al., 2020b).

The TOHTN model we just described is a subset of HDDL. Most importantly, we require
the subtasks of each method to be totally ordered. Furthermore, HDDL models can feature
a propositional goal, i.e., a set g of facts which must hold in the end when T is empty.
We emulate this constraint within our model by appending an additional “goal operator”
og with pre(og) = g and eff(og) = ∅ to T . Thirdly, HDDL allows to specify (in)equality
constraints for pairs of arguments. We treat these as additional preconditions.

One more point to note is that we alter the problem such that exactly one (virtual)
reduction r0 is the hierarchy’s root which then features the initial tasks T as its subtasks
(see Def. 2). This transformation originates from pandaPIparser (Behnke et al., 2020), a
parser for HDDL problems which we make use of. Therefore, we adopted this simplification.

R1

R2R1R1

R2

F1
F2

F3

T1

T2L1

L7

Figure 1: Example instance of the Factories planning domain

2.1.4 Example

Throughout the paper we will use the domain “Factories” by Sönnichsen and Schreiber
(2020) as an example for our formalism. In the planning instance illustrated in Fig. 1, two
trucks T1, T2 can transport resources from one location to another and a factory F1 can
indefinitely produce resource R1. The objective is to construct factory F3 at location L7,
for which resources R1 and R2 are required. In addition we have a blueprint for factory
F2 which is able to produce resource R2. However, one unit of resource R1 is consumed in
order to construct F2 and also for each unit of resource R2 that F2 produces.

In a planning domain for this scenario we have predicates such as at(o, l) (Is object o
at location l?), requires(f, r) (Does factory f require resource r to be built?) and free(l)

1122

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

do construct(F3, L7)

get resource(R1+2, L7) constr(F3, R1+2, L7)

get resource(R1, L7) get resource(R2, L7) fuse(R1+2, R1, R2, L7)

do construct(F1, L1) do produce(F1, R1) do deliver(R1, L1, L7)
. . .

produce(R1, F1, L1) pickup(T1, R1, L1) drop(T1, R1, L7)goto(T1, L1) goto(T1, L7)

Figure 2: Selected parts of a task network for above Factories planning instance

(Can a factory be built at l?), and operators such as move(t, l1, l2) to move truck t in
between connected positions, pickup(t, r, l) and drop(t, r, l) for picking up and dropping
resources, construct, produce, and so on. In addition we define tasks and methods. Fig. 2
depicts a partially expanded task network that may result from such a hierarchical model.
Primitive tasks are rectangular and colored gray, compound tasks have rounded corners.
For instance, do construct(F3, L7) is the only initial task of our problem and is achieved
through a method m(f, r, l) for f := F3, resource r := R1+2 (an object representing the
union of R1 and R2), and l := L7 with preconditions {requires(f, r), free(l),¬constructed(f)}
and subtasks 〈get resource(r, l), construct(f, r, l)〉. In words, we can construct F3 at L7 by
bringing one unit of R1+2 to L7 and then, atomically, performing the actual construction.
Similarly, we get resource R1+2 to L7 by getting both R1 and R2 to L7 and then fusing the
two resources; we get R1 to L7 by ensuring that F1 is constructed at L1, then producing
R1 and finally delivering it to L7; and so on. In the bottom left, the chosen method for
task do construct(F1, L1) leads to an empty sequence of subtasks: It has a precondition
at(F1, L1) which ensures that F1 is already present, so nothing must be done.

When we repeatedly apply such methods and instantiate more and more layers of the
network, we successively decompose the task network into more and more concrete tasks un-
til only actions remain. If this sequence of actions is executable from left to right beginning
with initial state sI , then we found a solution to our problem.

2.2 SAT Solving

We briefly explain the basics of Satisfiability (SAT) solving. A Boolean variable v can only
take two values, true and false. A Boolean literal is a Boolean variable v or its negation
¬v. A clause c = (l1 ∨ l2 ∨ . . . ∨ lk) is a disjunction (logical OR) of Boolean literals. A
propositional formula given in CNF (Conjunctive Normal Form), F = (c1∧c2∧ . . .∧cn), is a
conjunction (logical AND) of clauses. The propositional satisfiability (SAT) problem is the
decision problem of whether there exists a consistent assignment to all Boolean variables
in F such that F evaluates to true. In practice, we do not consider SAT a pure decision
problem but also require a satisfying assignment to be reported if such an assignment exists.

Application-specific problem solvers can profit from SAT solving by encoding their spe-
cific problem into propositional logic, executing a SAT solver on the resulting formula, and
decoding a satisfying assignment back into the problem domain. Yet, in some applications

1123

Schreiber

such as in PSPACE-complete classical automated planning, a theoretical gap between the
complexity of the problem to solve and the complexity of SAT (which Cook, 1971 showed
to be NP-complete) arises. In this case we cannot hope to find a general polynomially sized
encoding of our entire problem into a single formula. Instead, a sequence of SAT formulae
of increasing “problem horizon” is encoded until at some point a formula is found to be
satisfiable. All relevant SAT-based classical planners have been using this kind of proce-
dure (Kautz & Selman, 1998; Kautz, Selman, & Hoffmann, 2006; Rintanen, 2014), using
the maximum number of considered steps as the problem horizon and sometimes allowing
for several non-conflicting actions to be executed in a single step.

Gocht and Balyo (2017) introduced incremental SAT solving to SAT-based planning as
an improvement. An incremental SAT solver can be queried multiple times with a growing
set of clauses and a set of assumption literals. The latter are considered axiomatic for a single
solving attempt and dropped afterwards. As such, the solver can preserve its knowledge
base, reuse conflict clauses from earlier solving iterations, and avoid to repeatedly parse
and preprocess similar sets of clauses. Schreiber et al. (2019b) were the first to exploit this
technique for hierarchical planning.

3. Related Work

In this chapter we discuss important scientific work related to our approach. We omit a
reiteration of the history of the first hierarchical planning approaches leading up to today’s
established HTN planners because such reviews have been done extensively many times
before, for example by Georgievski and Aiello (2015). Instead we focus on the most relevant
topics for our means: We discuss grounding of HTN planning problems and approaches to
SAT-based HTN planning, and touch on lifted encodings for SAT-based planning.

3.1 Grounding

We now provide some context for grounding HTN planning domains and share some of our
own considerations regarding the topic of lifted vs. ground HTN planning.

While many HTN planners operate on the lifted problem description (e.g., Nau et al.,
1999; Magnaguagno, Meneguzzi, & de Silva, 2020), ground approaches operate on a simpli-
fied and “flattened” representation of the problem. Through grounding, all facts, actions,
and reductions which may be relevant to solve the problem are enumerated and compressed
into compact data structures. Finding this subset of relevant facts and operations is a diffi-
cult problem in itself: For general HTN planning it can even be shown that it is undecidable
whether a given action can be part of a plan (Behnke et al., 2020).

Grounding procedures in automated planning generally perform graph-based reachabil-
ity analyses and only accumulate instantiations which may be reachable during planning
(Helmert, 2009). The science of grounding HTN domains is comparably young as a des-
ignated area of research with only two notable publications to date (Ramoul et al., 2017;
Behnke et al., 2020). Two different analyses that are employed in HTN grounding are
(i) top-down reachability analyses where only the operations reachable from the problem’s
initial tasks over transitive subtask relationships are instantiated, and (ii) bottom-up reach-
ability analyses. The latter perform a state-based reachability analysis on the classical plan-
ning problem, for example a delete-relaxed reachability analysis based on planning graphs

1124

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

(Helmert, 2009), obtain an upper bound on the set of reachable world states and actions,
and discard any operations (and potentially their parent operations in the hierarchy) which
are never applicable regarding their preconditions.

Naturally, the grade of success of such approaches varies depending on the problem
at hand. In many cases grounding is successful in practice and can be beneficial for the
subsequent search algorithm (Ramoul et al., 2017). For instance, grounding procedures can
be able to prune an operation o because some unavoidable (transitive) child of o is impossible
to achieve while lifted planners may get lost in search space without such knowledge.

...

L1

L2

L3

L4

L5

Ln

Ln+1L0

T1, . . . , Tn
. . .

Figure 3: Excerpt of an artificial planning instance from the domain Factories

However, on some planning domains, grounding suffers from intrinsic scaling problems.
Fig. 3 illustrates a simple example from the domain Factories. There are n trucks at L0 and
the objective of the problem (i.e., resources to be transported) is located at the far right
beyond Ln+1. Assume that only a single truck is required for this objective. Any complete
grounding procedure is required to instantiate operations for each of the n trucks to traverse
any of the locations L1, . . . , Ln in order to get to Ln+1 and achieve the actual task: None
of the O(n2) operations can be omitted because every operation is reachable and can be
part of a plan.1 This example can be generalized to make the argument that the minimum
number of operations produced through grounding can be a high order polynomial in the
problem size. The maximum arity of any operation signature provides an upper bound on
the polynomial’s order. By contrast, a lifted progression search planner can simply make
an ad-hoc decision on the truck and the route to take.

3.2 SAT-Based HTN Planning

The first propositional logic encodings for HTN planning problems have been introduced by
Mali and Kambhampati (1998). These encodings, however, were restricted to non-recursive
(or acyclic) domains. An HTN domain is non-recursive when the graph of all subtask
relationships is acyclic. For such domains there is a fixed maximum number of actions any
given task can induce, which renders problems relatively easy to solve. Non-recursive HTN
planning is unpopular; for instance, in the IPC 2020, 40 TOHTN planning domains but
only three non-recursive domains were submitted, and an advertised Acyclic Track (Behnke
et al., 2020b) was cancelled due to lack of participants.

1. An interesting direction of research could be to explore incomplete grounding approaches which detect
symmetries in the problem and only instantiate some sufficient subset of operations.

1125

Schreiber

After these initial encodings, two decades passed until Behnke et al. (2018) revisited the
topic and developed a novel encoding approach named totSAT and designed for TOHTN
planning, showing that it outperformed several prior HTN planning algorithms. The authors
of totSAT refined this approach to support general HTN planning (Behnke et al., 2019a)
and optimal planning regarding the number of actions (Behnke et al., 2019b). The employed
encoding is expanded iteratively, but handed to a non-incrementally operating SAT solver
at each iteration. All these techniques have been integrated into the PANDA planning
system, so we will refer to this branch of approaches as “PANDA-SAT”.

Independently and almost simultaneously, Schreiber et al. (2019a) developed a SAT en-
coding for TOHTN planning problems which exploits incremental SAT solving by simulating
a stack machine of tasks and using the number of stack machine transitions as the problem
horizon to increase. An enhancement of this approach resulted in the Tree-REX planner
(Schreiber et al., 2019b) which was shown to be much more efficient than its precursor while
capable to find the shortest possible plan at the first solvable layer.

Although their authors were unaware of each another, Tree-REX and PANDA-SAT
converged regarding their encoding structure to some degree: The encodings are iteratively
extended not along the length of a final plan (as is the case for encodings for classical
planning) but instead along the depth of the hierarchy, essentially leading to an iterative
deepening search of the task network at hand. The main difference between the encodings
is that Tree-REX encodes states, preconditions, and effects at every layer of the problem
while PANDA-SAT only encodes them at the currently final layer, propagating method
preconditions as virtual actions instead of encoding them natively.

Furthermore, both approaches rely on a grounding stage prior to the encoding and
solving stage. Tree-REX uses the grounding procedure presented by Ramoul et al. (2017)
and enhances it by a top-down reachability analysis. The PANDA planning system uses a
separate grounding procedure which was recently used as a basis for pandaPIgrounder, the
most efficient HTN grounder to date (Behnke et al., 2020); yet, the original grounder of
PANDA is significantly slower and of lower quality. A direct comparison of PANDA-SAT
and Tree-REX by Schreiber et al. (2019b) suggested that Tree-REX mostly finds plans
significantly faster and of comparable or better quality.

The work we present is named Lilotane (Lifted Logic for Task Networks). It is based
on the ideas of Tree-REX but omits grounding and uses a substantially reworked encoding.
As we successfully avoid a combinatorial blowup of the problem input which is intrinsic to
all previous SAT-based approaches, we improve on state-of-the-art HTN planning. Lilotane
comes with two limitations which we elaborate on in the following.

First, our approach is limited to TOHTN planning. As a matter of fact, the total or-
dering of subtasks and consequently the exact knowledge of each operation’s position in the
hierarchy enables us to perform significant optimizations and greatly simplifies the resulting
encoding. We argue that totally ordered HTN models are highly popular and, where possi-
ble, desirable over partial orderings: Imposing a total order on the task network reduces the
decisions a planner needs to make and helps to achieve a plan that is well-structured and
simple to interpret for a human. The recent International Planning Competition suggests
that TOHTN planning is highly popular, as the Total Order track had twice the number of
competitors of the Partial Order track. Furthermore, 40 totally ordered planning domains
from nine different groups but only eleven partially ordered planning domains from two

1126

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

groups were submitted (Behnke et al., 2020b). That being said, we do expect that our
lifted encoding approach can be transferred to general HTN planning in the future.

Secondly, while we do consider quality-awareness in our approach, Lilotane is not gener-
ally optimal with respect to the number of actions in a plan. We believe that the problem-
dependent bound by Behnke et al. (2019b) for how deeply the hierarchy must be explored
until an optimal plan can be found is expensive to obtain with no access to the ground
problem. As such, our approach does not knowingly find optimal plans but offers tools to
indefinitely improve the plan, guaranteeing that eventually the optimal plan will be output
if sufficient time and memory are available. Our evaluations suggest that our quality-aware
approach is highly practical while far more efficient than existing optimal approaches.

3.3 Lifted SAT Encodings for Automated Planning

The idea of reducing the number of encoded actions in SAT-based automated planning
ranges back to Kautz, Selman, et al. (1992) who proposed to “factorize” actions by split-
ting each signature into several shorter signatures. Based on this idea, various factorized
encodings have been established which encode arguments explicitly and can therefore be
considered lifted SAT encodings (Ernst, Millstein, & Weld, 1997). Executing multiple non-
interfering actions at a single step can be problematic for these encodings and requires non-
trivial adjustments (Robinson, Gretton, Pham, & Sattar, 2009; Williams, 2020). To further
reduce grounding overhead and encoding size, Cashmore, Fox, and Giunchiglia (2013) pre-
sented an approach of Quantified Boolean Formula (QBF) based planning. Most recently,
Bonet and Geffner (2020) described a fully lifted “meta-encoding” of planning domains in
order to infer a first-order symbolic representation from the structure of state space.

Our hierarchical encoding shares some of the issues of previous lifted encodings such as
more complex frame axioms (Ernst et al., 1997). Yet, due to the rigid layout of operations
induced by the given problem hierarchy, we do not consider parallel action execution and
are faced with new challenges and opportunities, as we elaborate in the following chapters.

4. Planning Approach

In this chapter we present our overall planning algorithm.
In order to solve a TOHTN planning problem, we partition the hierarchy into a sequence

of hierarchical layers {L0, L1, . . .}. The first layer L0 only contains the initial reduction r0.
For i > 0, layer Li contains all operations which match a subtask of some operation at layer
Li−1. Intuitively, the index or depth of a layer can be seen as the degree of refinement of the
planning problem. Furthermore, each layer is subdivided into positions to account for the
total ordering of all operations. Scanning a layer from left to right chronologically traverses
possible plans at the respective degree of refinement.

As illustrated in Algorithm 1, we begin to construct the first two hierarchical layers L0,
L1 of the problem, encode them into propositional logic, and then perform a first solving
attempt of the formula in line 24 under the logical assumption that all operations chosen
at the currently final layer are primitive. As long as the SAT solver reports unsatisfiability,
we construct the next layer, extend our formula by that layer’s encoding, and attempt to
solve it in the same way. When satisfiability is reported, we either directly decode and
return a plan from the satisfying assignment or we employ a plan improvement procedure

1127

Schreiber

Algorithm 1: Lilotane Planning Procedure

Input: Π = (D, sI , T)
Result: Plan π

1 Preprocess Π; // parsing, simplification, setup of data structures

2 H := 〈〉;
3 L0 := 〈 CreateInitialPosition(T, sI) 〉;
4 H := H ◦ 〈L0〉;
5 F := ∅; // global relevant facts

6 for l = 0, 1, . . . do
// instantiate new layer

7 Ll+1 := 〈〉;
8 S0

l+1 := (sI , ∅); // reachable facts at this layer

9 x′ := 0;
10 for x = 0, . . . , |Ll| − 1 do
11 el,x := max{1,max{|subtasks(r)| | r ∈ Pl,x}}; // max. expansion size

12 for z = 0, . . . , el,x − 1 do

13 Pl+1,x′ := Instantiate(Pl,x, z, S
x′

l+1);

14 Ll+1 := Ll+1 ◦ 〈Pl+1,x′〉;
15 Sx′+1

l+1 := Sx′

l+1 ∪ possibleFactChanges(Pl+1,x′);

16 F := F ∪ relevantFacts(Pl+1,x′);
17 x′ := x′ + 1;

18 end

19 end
// encode new layer

20 for x′ = 0, . . . , |Ll+1| − 1 do
21 Encode(Pl+1,x′ , F);
22 end

// finalize layer, attempt to solve

23 H := H ◦ Ll;
24 result := Solve(H);
25 if result is SAT then

// optional anytime plan length optimization

26 while further plan improvement is desired do
27 OptimizeCurrentPlan(H);
28 if plan is depth-optimal break;

29 end
30 return Decode(H, result);

31 end

32 end

as long as the plan is improvable and the user permits it (see Chapter 6). This general
procedure has been introduced by Schreiber et al. (2019b) and is conceptually based on the
approach of (classical) planning via incremental SAT solving by Gocht and Balyo (2017)
where assumptions are used to enforce a completed plan at the current problem horizon.

4.1 Instantiation

Let us now take a closer look at how hierarchical layers are defined and constructed.

1128

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

Let Pl,x denote the x-th position of the l-th layer Ll. The initial layer L0 is obtained
from the problem definition: The only position P0,0 of L0 only contains the initial reduction
r0. Given a layer Ll = 〈Pl,0, Pl,1, . . . , Pl,x, . . .〉, we compute the possible children of the
operations at each Pl,x and append respective new positions to the subsequent layer Ll+1.

ε εa
ε

r

ε

r′

ε ε

a

a

a
r′
r

x

x′ x′ + 1 x′ + 2

l

l + 1

a
r′
r

x
l

Figure 4: Construction of hierarchical layers. Rectangles are actions, rounded rectangles
are reductions. Stacked operations denote a set of alternatives (“or”). Left: Pl,x contains
several operations each of whose expansions is normalized to the maximum expansion size
of three. Right: The child operations are aggregated into three new positions.

Consider the situation illustrated in Fig. 4: We are in the process of instantiating layer
l+ 1. Positions Pl,0, . . . , Pl,x−1 of layer Ll have already been processed and resulted in new
positions Pl+1,0, . . . , Pl+1,x′−1 at layer Ll+1 for some x′. Consequently, the children of Pl,x
begin at index x′. We refer to this index x′ as sl(x), the first successor position (or child
position) of Pl,x. In Fig. 4, Pl,x features three possible operations: reductions r and r′ and
action a. Assume that by their definition, r has three subtasks and r′ has two subtasks.

Each subtask of an operation may be achieved by any of several operations, depending on
whether an operator matches the subtask or, otherwise, how many distinct methods match
the subtask. For the final plan, only a single operation from each position will be chosen.
We denote the set of operations which can result from the z-th subtask of an operation o as
children(o, z) for z ≥ 0. As we know for every operation how large its induced sequence of
children will be (1 for an action and |subtasks(r)| for a reduction r), we can easily compute
el,x as the maximum expansion size of any operation at Pl,x.

As a consequence, we know that position Pl,x induces el,x child positions beginning
from sl(x). To keep each child position well-defined for each parent operation, we define
children(o, z) := {ε} if o is a reduction and z ≥ |subtasks(o)| if o is an action and z ≥ 1.
We define ε as a special action with pre(ε) = eff(ε) = ∅ which is treated as a normal action
in the encoding but omitted in the final plan. As such, in Fig. 4 we have constructed three
new positions each of which contains the union of all children at the respective offset.

4.1.1 Example

We now illustrate this approach with the Factories domain introduced in Chapter 2.1.4. For
the sake of simplicity, we use a very simple planning task as pictured in Fig. 5: The goal is
to construct factory F2 at location C which requires one unit of resource R. This resource
can be produced without any prerequisites either by F0 at A or by F1 at B and must be
transported to C by truck T1 or T2.

1129

Schreiber

RF0
RF1

T1 T2

F2
R

A B C

Figure 5: Simple planning example from the Factories domain

goto(T1, B,C,C)

do construct(F2, C)P0,0

P1,0

get(R,F1, B,C)

get(R,F0, A,C)

constr noop(F0, A)

constr noop(F1, B)

do produce(R,F0, A)

do produce(R,F1, B)

deliver(R, T1, A,C)

P2,0

P1,1

P2,1 P2,3P2,2

produce(R,F0, A)

produce(R,F1, B)

goto noop(T1, A)
goto noop(T2, B)
goto(T1, A,B,B)
goto(T2, B,A,A)

pickup(T1,R,A)
pickup(T1,R,B)
pickup(T2,R,A)
pickup(T2,R,B)

drop(T1,R,C)

drop(T2,R,C)

produce(R,F0, A)

produce(R,F1, B) . . .

ε() pickup(T1,R,A)
pickup(T1,R,B)
pickup(T2,R,A)
pickup(T2,R,B)

move(T1,A,B)

move(T2,B,C)

. . .

goto noop(T2, C)

drop(T1,R,C)

drop(T2,R,C)

. . .

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6

P4,0 P4,1 P4,2 P4,4 P4,5 P4,6 P4,7 P4,8

goto(T1, A,B,C)
goto(T2, B,C,C)
goto(T2, A,B,C)

constr(F2, R, C)

constr(F2, R, C)

constr(F2, R, C)

constr(F2, R, C)

ε()

ε()

deliver(R, T2, A,C)
deliver(R, T1, B,C)
deliver(R, T2, B,C)

. . .

. . .

ε()

P4,3

Figure 6: Five hierarchical layers of the Factories instance from Fig. 5. Each white rectangle
is a position. Black lines connect a position to its child positions. Actions are displayed as
rectangles, reductions are displayed as rounded rectangles. A set of operations leading to a
valid plan is colored green.

Fig. 6 illustrates the layers instantiated by Lilotane for solving this planning problem.
The tree-like structure is similar to the illustration of a task network in Fig. 2. However,
note two important differences: First, while the nodes in Fig. 2 represent compound and
primitive tasks, the nodes in the above tree feature reductions and actions instead. Secondly,
the task network in Fig. 2 represents one particular (partial) expansion of a problem whereas
above structure represents all possible expansions (abbreviated where necessary).

Layers L0 through L4 are displayed from top to bottom. L0 only contains a single initial
reduction do construct(F2, C) at position P0,0

2. This reduction induces two child positions
at layer L1, P1,0 and P1,1, with all possible operations which match the first and second

2. For the sake of simplicity, the illustration deviates from our definition where the initial reduction is a
virtual operation which features the actual initial reduction(s) as its children (see Chapter 2.1.3).

1130

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

subtask of do construct(F2, C) respectively. Further down, we omitted some operations at
positions marked with “. . . ”.

An “almost complete” hierarchical plan for the problem at hand is colored green. This
plan involves producing R at factory F1 and using truck T2 to transport it in a single move
action to location C where R is used to construct F2. The plan is not entirely finished: Our
SAT encoding up to L4 will not be satisfiable because operation goto noop(T2, C) at P4,6

is not primitive and still needs to be concretized. However, it is clear that this reduction
at P4,6 will decompose into an ε-action at the next layer L5. Then all chosen operations at
the final layer are primitive and the highlighted plan can be found and reported.

4.1.2 Transformation of Reductions into Actions

The inability of our basic approach to find a plan at L4 in the above example can be corrected
by treating certain reductions as actions, as introduced by Schreiber et al. (2019b).

First, all reductions r with subtasks(r) = 〈〉 are treated as actions throughout the
planning procedure. In Fig. 6, our plan contains such an empty reduction as its only
remaining non-primitive operation at position P4,6. If we treat this operation as an action,
we can find a plan at layer L4 and do not need to construct and encode another layer. If an
extracted plan contains such an “action” at the final layer, we omit it in the output of the
primitive plan but keep the corresponding reduction as a part of the hierarchical solution.

Secondly, given a reduction r with subtasks(r) = 〈a〉 where a is a primitive task, we
replace r with a new action a′ with pre(a′) := pre(r) ∪ pre(a) and eff(a′) := eff(a). In our
example in Fig. 6, reduction r = do produce(R,φ, λ1) at position P2,1 would be replaced in
this manner. When a plan contains such a surrogate a′, we replace it with r and its child a.

In some cases, these simplifications shortcut necessary expansions and hence decrease
the depth required to find a plan by one, which can make a notable difference if the size of
layers grows exponentially in the depth of a problem.

4.1.3 Pseudo-Constants

Unlike previous SAT-based approaches which perform a complete grounding, Lilotane lazily
instantiates each operation from a parent’s definition just when needed. In addition, as we
explain next, this instantiation is done minimalistically: We do not fully instantiate child
operations with free arguments but instead keep them lifted.

Consider position P1,0 in Fig. 6. On an intuitive level, this position features the produc-
tion and transportation of resource R to location C. Both F0 and F1 are able to produce R.
In addition, at position P2,2 truck T1 or T2 must be chosen to transport R. The combina-
tion of these two decisions leads to four different deliver operations at position P2,2. More
generally, the full instantiation of such argument combinations can lead to a concerning
increase of operations at each position (see Chapter 3.1).

To alleviate this issue, we replace free arguments in methods with new symbols instead
of fully instantiating them. Let φ be the picked factory, λ the location of φ, and θ the picked
truck. Then we can express both operations at P1,0 as get(R,φ, λ, C) and all four operations
at P2,2 as deliver(R, θ, λ, C). We call the new argument symbols pseudo-constants: At a
later point, φ must be substituted with either F0 or F1, θ must be substituted with either

1131

Schreiber

T1 or T2, and so on. With our encoding presented in Chapter 5 we will let a SAT solver
decide which of the possible substitutions to apply for each pseudo-constant.

In general, for each free argument ai of operation o, we initialize the effective domain,
dom(αi), of pseudo-constant αi with the argument type τi. We then remove any constants
from dom(αi) for which some precondition of o becomes impossible at the current position.
(We explain in Chapter 4.2 how this can be checked.) Only if |dom(αi)| = 1 we do not
introduce a pseudo-constant but rather directly substitute ai with the only valid constant.

Essentially, instead of introducing
∏
i |dom(αi)| operations, we introduce one lifted op-

eration with
∑

i |dom(αi)| different pseudo-constant values to handle. However, we will still
need to enumerate and encode all (ground) preconditions and effects that can result from
such a lifted operation. This concept is not unlike the lifted successor generation recently
proposed by Corrêa, Pommerening, Helmert, and Frances (2020) for the case of classical
planning, where actions are kept lifted while states are maintained in a ground representa-
tion. Just like their approach, our idea is built upon the assumption that there are fewer
ground facts than there are reachable ground operations in the problem. In Chapter 7, we
show by benchmark analyses and experiments that this assumption is reasonable in general.

goto(θ,λ4,λ6,C)

R@{A,B,C,T1,T2}

T1@A
T2@B

A↔B
B↔C

do construct(F2, C) R@{A,B,C,T1,T2}

P0,0 P0,1

P1,0

get(R,φ,λ1,C)

F0⇒R
F1⇒R

F0@A

R@A

R@B

F2@C

P2,0

P1,1

P2,1 P2,3P2,2

P1,2

P2,4

R@A

R@B

goto(θ,λ3,λ2,λ1) ¬T1@A pickup(θ,R,λ1) R@{T1,T2} drop(θ,R,C) R@C F2@C

F1@B

T1@{B,C}

T1@A
T2@B

A↔B
B↔C
F0⇒R
F1⇒R

F0@A
F1@B

. . .

¬T2@B
T1@{B,C}
T2@{A,C}

R@A

R@B

. . .
ε()

. . .
¬T1@A
¬T2@B
T1@{B,C}
T2@{A,C}

R@{T1,T2}

move(θ,λ5,λ4)
goto noop(θ, C)

drop(θ,R,C) F2@C

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9

goto noop(θ, C)

R@C

constr(F2, R, C)

constr(F2, R, C)

constr(F2, R, C)

constr(F2, R, C)

ε()

. . .

ε()

. . .

constr noop(φ,λ1)

do produce(R,φ,λ1) deliver(R,λ1,C,θ)

produce(R,φ,λ1)

goto noop(θ, λ1)

goto(θ, λ5, λ4, C)

produce(R,φ,λ1) pickup(θ,R,λ1)

ε() ε()

= F0 ∨ F1

= A ∨B
= A ∨B ∨ C
= A ∨B ∨ C
= T1 ∨ T2

φ

λ1
λ4
λ5
θ

T2@{A,C}
F2@C

¬T1@A
¬T2@B

T1@{B,C}
T2@{A,C}
F2@C

¬T1@A
¬T2@B

R@{C,T1,T2}
T1@{B,C}
T2@{A,C}

¬T1@A
¬T2@B

R@C

Figure 7: Hierarchical layers as in Fig. 6 but with pseudo-constants and reachable facts.
Facts occurring for the first time in a layer are displayed as blue boxes with rounded corners.
Blue lines (horizontal) connect operations with any “new” facts they may cause.

Fig. 7 applies the example from Fig. 6 to the use of pseudo-constants. This figure
serves as a running example throughout the following sections and hence also introduces
certain fact collections at each layer which we will discuss in Chapter 4.2. For now, let us
concentrate on the operations that occur within the layers. At P1,0 we introduce pseudo-
constant φ for the factory producing R and at P2,2 we introduce pseudo-constant θ for the
truck to transport R to C. At positions P1,0, P3,2, . . . we introduce various pseudo-constants

1132

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

λ1, λ2, . . . to represent particular locations. It can be seen that pseudo-constants, just like
normal arguments, are propagated down to the (transitive) children of the operation they
originated from. In the top left corner the chosen substitution for each relevant pseudo-
constant is displayed: This information is essential to decode a valid plan from the chosen
operations. A pseudo-constant is relevant if and only if the operation it originates from is
part of the (hierarchical) solution.

4.2 Reachability Analysis for Facts and Operations

In order to minimize the number of added operations, we perform a reachability analysis
at each layer where we take into account the possible world states at each position.

For each operation o we instantiate, we define pfc(o) as the possible fact changes of o –
an over-approximation of all positive and negated facts which may be caused by o or by any
transitive child of o. With the use of this function, we construct and successively update
Sl+1, which represents all positive and all negative facts which may have been effected so
far by earlier operations, at each layer Ll+1. We define the x-th update of Sl+1 as follows:

Sxl+1 := (+Sxl+1,−Sxl+1) :=
(x−1⋃
i=0

⋃
o∈Pl+1,i

pfc(o)+,
x−1⋃
i=0

⋃
o∈Pl+1,i

pfc(o)−
)
.

As such, +Sxl+1 (−Sxl+1) consists of all positive (negative) facts that may be produced by
some operation up to the x-th position.

For any position Pl,x, we define a positive fact f to be reachable at position Pl,x if
f ∈ sI ∪ +Sxl holds. Similarly, a negated fact ¬f is reachable at Pl,x if f ∈ −Sl or
f /∈ sI ∪+Sxl holds. If a fact f is not reachable at Pl,x, then we call f invariantly false at
Pl,x. If for a fact f its negation ¬f is not reachable at Pl,x, then we call f invariantly true
at Pl,x. Note that if some fact f is invariantly true (false) at Pl,x, then ¬f is invariantly
false (true) at Pl,x. We use Sl and these definitions to check the invariance of preconditions
in the “Instantiate” procedure in line 13 of Alg. 1 to prune impossible operations.

In the following, we first illustrate our reachability analysis in an example, then describe
how we compute Sl and pfc(·), and establish a proof of correctness for our analysis.

We visualized a number of facts in Fig. 7. In each position Pl,0 all facts in the initial
state are displayed (or abbreviated, for l ≥ 2). In each position Pl,x for x > 0 all facts
are displayed which were invariantly false at Pl,0, . . . , Pl,x−1 and which become reachable at
Pl,x. Facts have been abbreviated – for example, F0@A to denote that factory F0 is present
at location A, A↔B to denote that there is a path between A and B, and F0 ⇒ R to denote
that factory F0 produces resource R. Some redundant facts are omitted: Each fact (¬)φ@λ
for factory φ and location λ also implies the fact (¬)constructed(φ).

Blue horizontal lines indicate which facts are caused by which operation. In the case of
get(R,φ, λ1, C) at P1,0, we can see that this operation may cause resource R to be located
anywhere (due to do produce and deliver) and both trucks T1, T2 to be located anywhere
(because the goto subprocedure in deliver is recursive and may lead a truck to any location).
These fact changes include the negative facts ¬T1@A and ¬T2@B as they were unreachable
before (because T1@A and T2@B hold initially). According to pfc(·), the operation may even
cause F2 to be constructed – this false positive will be discussed further in Chapter 4.2.3.

1133

Schreiber

Reduction r = get(R,φ, λ1, C) at P1,0 encompasses the construction of some factory φ at
location λ1 as its first subtask. Without incorporating any knowledge from preconditions,
we would assume that dom(φ) = {F0, F1, F2} and dom(λ1) = {A,B,C}. However, r has a
precondition φ⇒ R. According to S0

1 , this precondition is invariantly false for φ = F2. For
this reason, φ is initialized with a smaller domain, dom(φ) = {F0, F1}. Note that reducing
the domain of a pseudo-constant is a form of pruning in our approach as it cuts the number
of ground operations that are represented by the enclosing lifted operation.

Nevertheless it can also occur that an entire operation is pruned. The first subtask
of r, namely the construction of φ at λ1, is achieved at position P2,0. This task can be
matched by constr noop(φ, λ1) (with a precondition φ@λ1) or do construct(φ, λ1) (with a
precondition ¬constructed(φ)). As both F0 and F1 are already constructed according to S0

2 ,
we know that the precondition of do construct(φ, λ1) is invariantly false for all substitutions
of φ. As such, this operation is not included in position P2,0.

4.2.1 Computation

We now describe how to efficiently compute our reachability analysis. S0
l+1 is initialized

with the initial state sI and no negative facts in line 8 of Alg. 1: It would be redundant
and expensive to add all syntactically possible facts to the set S0

l+1 which are not in sI . We
can implicitly consider them invariantly false according to the closed-world assumption.

For x′ ≥ 0, we construct Sx
′+1
l+1 via possibleFactChanges(Pl+1,x′) in line 15 of Alg. 1. In

this procedure we collect all possible fact changes of Pl+1,x′ , PFCl+1,x′ :=
⋃
o∈Pl+1,x′

pfc(o),

and then update Sx
′+1
l+1 := (+Sx

′
l+1 ∪PFC+

l+1,x′ ,−Sx
′
l+1 ∪PFC−l+1,x′). For any operation o, we

compute pfc(o) as follows:

• If o is primitive, then pfc(o) = g(eff(o)). Thereby g(·) is the ground hull of a set of
facts: Any lifted fact in eff(o) is fully instantiated into a set of ground facts.

• Otherwise, pfc(o) = g(
⋃el,x
z=0

⋃
o′∈children(o,z) pfc(o′)), i.e., we recursively compute the

possible fact changes of each possible child of o and ground the resulting facts.

To avoid infinite recursion, we remember each visited method together with its subset of
ground arguments and break recursion when an equivalent signature occurs again. We
employ memoization to compute the fact changes only once per operator and method.

4.2.2 Correctness

To make sure that our reachability analysis works as intended, we show a central (semi-
formal) correctness property of Sl:

Theorem 1. For l ≥ 0 and x ≥ 0, let Ol := 〈o0, . . . , ox〉 be a sequence of operations where
each oi is a possible operation at position Pl,i of some problem Π. Expand each oi ∈ Ol into
some sequence Oi of actions such that O := O0 ◦ . . . ◦ Ox is executable from sI .
(1) If fact f holds after the execution of O, then f is reachable at Pl,x+1 according to Sx+1

l .
(2) Similarly, if f does not hold after executing O, then ¬f is reachable at Pl,x+1.

The proof of this theorem is given in Appendix A. As a direct consequence, if some
fact (¬)f is not reachable at some position, then there is no way how any execution of the

1134

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

operations before this position could lead to f being true (false). For this reason, we can
safely prune any operations for which a precondition is not reachable according to Sl, as in
this case the precondition is definitely impossible.

4.2.3 Relevant Facts and Retroactive Pruning

The procedure we just described helps to discard irrelevant operations similarly to how
grounders analyze the problem in order to avoid instantiating unreachable operations. How-
ever, our analysis is done repeatedly on a successively refined sequence of operations. As
such, it generally gains knowledge the deeper we explore the problem hierarchy: The more
concrete our operations become, the more exact pfc(·) becomes.

For instance, in Fig. 7, F2@C is invariantly false at P1,0 but reachable at P1,1: As pfc(·)
ignores the preconditions of children, it finds that operation get(R,φ, λ1, C) has a possible
child do construct(·) which might achieve the construction of F2 (even if we know that
this cannot be the case). One layer later, this over-approximation is rectified: There is no
operation before P2,3 which can cause the construction of F2.

One consequence of this stepwise refinement is that some facts which in practice are
irrelevant for the planning task may be added to Sl. As we do not wish to encode facts
that are not relevant at this layer (yet), we maintain a set of relevant facts F which grows
monotonically with each further layer. A fact is relevant and consequently added to F if
it occurs as a (positive or negative) action effect or as a (positive or negative) precondi-
tion of some operation added to the current layer. Then, when we encode the layer into
propositional logic, we can check for each fact whether it is relevant and should be encoded.
Otherwise, we know that the fact cannot be actively involved in the planning task so far
and we omit it from our encoding.

Another consequence of our technique is that we may encode an operation o at layer
Ll and then notice at some layer Ll+k that a precondition of some necessary transitive
child o′ of o is not reachable. In such a case, o retroactively turns out to be impossible to
achieve. We mentioned in Chapter 3.1 how ground approaches are often able to prune such
operations a priori while our approach does not have the necessary knowledge to do so.

Fk
Rk

RkFk−1Rk−1Fk−2
. . .F1

R1F0
R2

RkF ′k−1
R′k−1F ′k−2

. . .F ′i
R′i+1R−

Figure 8: Dependency chains in an instance of the Factories domain

In Fig. 8 we adapted our Factories example to illustrate this issue. The initial reduction
is do construct(Fk, L) for some location L. Resource Rk is required to construct Fk and
can be produced either by Fk−1 or by F ′k−1. In both cases a certain production chain must
be followed to meet the requirements for producing Rk. However, the production chain

1135

Schreiber

enabling F ′k−1 is broken: For some 0 ≤ i < k, F ′i requires an unobtainable resource R− in
order to produce R′i+1.

In such a planning problem, the task of acquiring Rk may – allegedly – involve either
do construct(Fk−1, λ) or do construct(F ′k−1, λ

′) (for some λ, λ′). Both reductions cause a
large subtree of operations. However, O(k− i) layers further below, it turns out that there
is no valid reduction to acquire R−: Operation do construct(F ′i , ·) has no valid children
for its first subtask and is therefore impossible to achieve. As a result, parent operation
get(R′i+1, F

′
i , ·, ·) has no valid children matching its first subtask any more and becomes

unachievable, causing do construct(F ′i+1, ·) to become unachievable, and so on. As such,
the entire subtree of operations rooted at reduction o := do construct(F ′k−1, λ

′) turns out to
be irrelevant. The larger k − i, the more unnecessary work we already did; and the larger
i, the more irrelevant positions and operations may still be instantiated.

We cannot undo the work we already did, and we cannot remove clauses which were
already added to our incremental encoding. We can, however, remove the subtree of op-
erations rooted at o from our layers such that no more irrelevant children are induced at
a subsequent layer. Beginning from an operation found to be impossible, we traverse the
hierarchy upwards and recursively mark each parent which has no valid child left for some
of its subtasks. Then, beginning from the upmost marked operation(s), we traverse the
hierarchy downwards and remove all operations which have been marked or which have no
valid parent any more. We also add a unit clause to the encoding which forbids o to be
used and hence essentially switch off the logical constraints associated with o.

Our retroactive pruning technique benefits the planning process on a situational basis:
While many planning domains do not feature any retroactively pruneable operations, on
some domains we observed thousands of operations being pruned (see Table 6, Appendix C).

4.3 Precondition Inference

The effectiveness of the state-based reachability analysis we discussed in the previous section
crucially depends on expressive method preconditions: The pruning of impossible opera-
tions can have considerable effects on run times and encoding volume if pruned operations
would otherwise make up for a large number of transitive children. Yet, some domains do
not or very sparingly contain method preconditions. Our intention was to make Lilotane
robust towards such “ill-conditioned” domains missing expressive preconditions such that
the planner may still perform effective pruning.

We use a simple graph traversal of (lifted) subtask relationships in order to raise cer-
tain action preconditions up the hierarchy and hence infer method preconditions which
are implied by the problem logic. Interestingly, Magnaguagno et al. (2020) have imple-
mented a very similar technique for their TOHTN planner HyperTensioN which competed
with Lilotane in the IPC 2020, although their planning approach itself is very different
from ours. This indicates that efficient TOHTN planning algorithms oftentimes rely on
expressive method preconditions and ideally infer them where missing.

Our basic idea is that each precondition that is common to all operations in children(r, z)
for some z is forcibly a precondition of r itself, except if it may be caused by a child of r at an
earlier offset z′ < z. For instance, in our Factories example, method m := do produce(r, f, l)
to produce resource r via factory f at location l has action a := produce(r, f, l) as its only

1136

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

possible child at offset z = 0. As a result, pre(a) can be added to pre(m). By contrast,
method m′ := deliver(r, l1, l2, t) to deliver resource r from l1 to l2 via truck t has action
a′ := pickup(t, r, l1) as its only child at offset z = 1 with a precondition t@l1. However,
as there are child operations of m′ at offset z′ = 0 which can cause t@l1, this precondition
cannot be added to pre(m′).

For each operation o, we write pre∗(o) for the union of pre(o) with all new preconditions
that are found for o. If o is an action, pre∗(o) := pre(o). Otherwise, o is a method with
k ≥ 0 subtasks and we compute pre∗(o) recursively as follows:

We initialize pre∗(o) := pre(o) and E := ∅. For each offset z = 0, . . . , k− 1, we compute
the set of preconditions I :=

⋂
o′∈children(o,z) pre∗(o′) common to all operations at offset z.

We add the preconditions not yet achieved by an earlier subtask, I \E, to pre∗(o), and then
we add the possible fact changes of each o′ to E. If we recursively encounter method m
as a child while computing pre∗(m), we approximate pre∗(m) := pre(m) for that child to
avoid infinite recursion. As in the computation of possible fact changes (Chapter 4.2) we
compute pre∗ only once for each method.

In practice we have observed that this algorithm finds various preconditions in domains
where they are originally missing (see Table 6, Appendix C). In our Factories example,
the mentioned procedure will propagate precondition f⇒r from action produce(r, f, l) to
method do produce(r, f, l) and, consequently, to method get(r, f, l1, l2) if these method pre-
conditions are not specified explicitly.

4.4 Shared Pseudo-Constants and Dominated Operations

Our approach is based on the idea that every operation at some position will induce one
new pseudo-constant κ for each of its free arguments, with domain dom(κ) as described
in Chapter 4.1.3, and that child operations at subsequent layers naturally inherit some of
these pseudo-constants in addition to introducing new pseudo-constants themselves. There
are scenarios where this leads to undesired behavior.

m0(A,B)

m0(α1, β1) m1(α1, β2) m0(α2, β3) m1(α2, β4)

m0(B,α1) m1(B,α2)

m0(β1, γ1) m1(β1, γ2) m0(β2, γ3) m1(β2, γ4) m0(β3, γ5) m1(β3, γ6) m0(β4, γ7) m1(β4, γ8)

m0(A,B)

m1(α, β)m0(α, β)

m0(B,α) m1(B,α)

m0(β, γ) m1(β, γ)

Figure 9: Naive (left) and true (right) recursive children of m0. New pseudo-constants are
colored blue. An edge from u to v denotes that v matches a subtask of u.

Consider methods m0(a, b) and m1(a, b) with subtasks(m0(a, b)) = subtasks(m1(a, b)) =
〈t(b)〉 where task t(b) can be achieved both by m0(b, a) and m1(b, a). The transitive children
of m0(a, b) will blow up in our approach as depicted on the left in Fig. 9: At each further
layer, each operation branches into two new possible operations, and all produced operations
syntactically differ due to the unique names of pseudo-constants for each new operation. As
such, the number of operations grows exponentially in the explored depth whereas the true
structure of m0 only results in two distinct operations as depicted on the right in Fig. 9.

1137

Schreiber

As only a single operation can be active at each position, we suggest to share the same
new pseudo-constant among multiple operations: When two or more operations have a free
argument which would lead to exactly the same effective domain of a pseudo-constant, we
introduce the same pseudo-constant for these arguments. With this change, the recursive
children of m0(a, b) are computed properly in our minimalistic example. Yet, it does not
address the underlying problem in its entirety because, still, a new pseudo-constant will
be created whenever the effective domain does not exactly match another pseudo-constant
from the same position (e.g., due to different sets of invariant preconditions). As the number
of distinct domains for a given base type τ is only bounded by the number of power sets
over τ , we may again arrive at an intolerable number of distinct operations being produced.

As a pragmatic countermeasure, we unify certain operations after their instantiation.
We define that an operation o dominates another operation o′ if (i) sig(o) and sig(o′) are
syntactically equivalent except for any number of argument positions i where both argu-
ments ai of o and a′i of o′ are pseudo-constants, and (ii) both ai and a′i originate from the
same position and dom(ai) ⊇ dom(a′i) for each such i. After instantiating a position P , we
identify operations o′ ∈ P dominated by another operation o ∈ P . In such a case, we remove
each dominated operation o′ from P and update the possible parents of o′ to feature o as a
child instead. In addition, we logically restrict the pseudo-constants of o to be equivalent
to those of o′ whenever o becomes active as a child of one of the parents of o′.

We found these techniques to be an effective countermeasure against an exponential
blowup of the encoding as described above: On several domains, a significant number of
operations are dominated and subsequently removed this way (see Table 6, Appendix C).

5. Encoding

We now present our encoding Ll(Π) of layers L0, . . . , Ll of a TOHTN planning problem
Π into propositional logic. We first provide succinct definitions for all clauses to encode.
Thereafter we explain how to decode a plan from a satisfying assignment, provide a proof
of correctness, and present a worst-case complexity analysis.

5.1 Base Encoding

Some parts of the propositional logic encoding we now present, namely those specified in
Chapter 5.1.1, are taken from the Tree-REX approach by Schreiber et al. (2019b). The
fundamental difference between Tree-REX and our new encoding is that we must now
handle lifted actions and reductions and, consequently, lifted fact constraints.

In the following, we call the operations in our hierarchy actions and reductions regardless
of whether they contain pseudo-constants or not. Similarly we use the term fact for any
literal with constants and/or pseudo-constants. We use the term ground fact for a fact
without pseudo-constants and the term pseudo-fact for a fact with pseudo-constants.

We use a Boolean variable olx for each occurring operation o and a variable f lx for each
ground fact per position x of each layer l of the problem. Variables priml

x represent whether
position x at layer l features a primitive operation, i.e., an action and not a reduction. In
addition, for each pseudo-constant κ introduced to the problem we introduce variables [κ/c]
for each c ∈ dom(κ) which represent that κ is substituted with constant c.

1138

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

5.1.1 Basic Constraints

We begin with enforcing the initial reduction to hold at the only position of the first layer:

(r0)0
0 (1)

To avoid encoding superfluous facts, we make use of the set Fl of relevant facts (see Chap-
ter 4.2.3). We introduce a Boolean variable for each relevant fact and enforce it to assume
a polarity according to the initial state at the zeroth position:

∀f ∈ Fl ∩ sI : f l0 (2)

∀f ∈ Fl \ sI : ¬f l0
If an action a occurs at position x at layer l, then we define the respective position as
primitive. Similarly, if a reduction occurs, we define the position as non-primitive.

alx ⇒ priml
x (3)

rlx ⇒ ¬priml
x

At most one action and at most one reduction may occur at the same position. Together
with Eq. 3, this enforces that at most one operation is active at each position.

∀a 6= a′ ∈ Pl,x : ¬alx ∨ ¬(a′)lx (4)

∀r 6= r′ ∈ Pl,x : ¬rlx ∨ ¬(r′)lx

This constraint adds O(n2) clauses if there are n actions, or reductions, at the same position.
In our case this quadratic measure is not as problematic as for Tree-REX because we
generally instantiate significantly fewer operations. Still, if n does become too large, we use
a logically equivalent encoding which introduces log(n) helper variables but only encodes
O(n log(n)) clauses. Based on preliminary experiments we use the latter encoding if n ≥ 50.
For a specification of this encoding we refer to Schreiber (2018, Appendix A).

Any operation o at Pl,x enforces its preconditions at Pl,x:

olx ⇒
∧

f∈pre(o)+

f lx ∧
∧

f∈pre(o)−

¬f lx (5)

Similarly, any action a enforces its effects at Pl,x+1:

alx ⇒
∧

f∈eff(a)+

f lx+1 ∧
∧

f∈eff(a)−

¬f lx+1 (6)

Later on in Chapter 5.1.2 we describe so-called frame axioms which complement the correct
enforcement of action effects. Also note that each f in above formulae may contain pseudo-
constants. For now we treat such pseudo-facts as we treat ground facts and encode each of
them with a Boolean variable.

To logically connect subsequent layers with each another we use the following clauses.
First, a ground fact f that holds at Pl,x must be logically equivalent to the same ground
fact at the first successor position Pl+1,sl(x) of Pl,x:

f lx ⇔ f l+1
sl(x) (7)

1139

Schreiber

Note that in practice these clauses do not occur in our encoding; instead we use exactly the
same Boolean variable for f lx and f l+1

sl(x) in the first place.
Next, we describe the sufficient and necessary conditions for operations at a new layer:

When a parent o is active at Pl,x, then for each offset z one of its children o′ at offset z
must be active at Pl+1,sl(x)+z.

∀z ∈ {0, . . . , el,x − 1} : olx ⇒
∨

o′∈children(o,z)

(o′)l+1
sl(x)+z (8)

Remember that children(o, z) is well-defined for all such z: For each action a and z > 0,
children(a, z) = {ε}, and for each reduction r and z ≥ |subtasks(r)|, children(r, z) = {ε}.

Schreiber et al. (2019b) found that it is beneficial for the SAT solving performance to
also redundantly enforce the opposite direction: When a child o′ is active at Pl+1,sl(x)+z,
then any of its possible parents o must be active at Pl,x.

∀z ∈ {0, . . . , el,x − 1} : (o′)l+1
sl(x)+z ⇒

∨
o | o′∈children(o,z)

olx (9)

To conclude the set of basic constraints which were already established in a similar form
by Schreiber et al. (2019b), we enforce the currently deepest layer Ll′ to be fully primitive,
what implies a fully expanded hierarchical task network, before attempting to find a valid
plan. The following unit clauses are added as assumptions, i.e., they are considered axioms
by the SAT solver for the upcoming solving attempt and discarded afterwards.

∀x ∈ {0, . . . , |Ll′ | − 1} : priml′
x (10)

5.1.2 Pseudo-Constants and Pseudo-Facts

Next we define the semantics of pseudo-constants and the constructs containing them.
For each pseudo-constant κ introduced by some operation o, κ must be substituted with

at most one constant from its possible domain, dom(κ), and if o is active then exactly one
such substitution must hold: ∧

c1 6=c2∈dom(κ)

¬[κ/c1] ∨ ¬[κ/c2] (11)

olx ⇒
∨

c∈dom(κ)

[κ/c] (12)

As in Eq. 4, we employ an asymptotically better encoding instead of Eq. 11 if κ has at least
n = 50 substitutions.

Consider a pseudo-fact fp with pseudo-constants κ1, . . . , κk (k ≥ 1). Assume that
substituting each such pseudo-constant κi with a particular constant ci ∈ dom(κi) yields
ground fact f . Then we define:(

[κ1/c1] ∧ [κ2/c2] ∧ . . . ∧ [κk/ck]
)
⇒
(
(fp)

l
x ⇔ f lx

)
(13)

In words, we enforce a pseudo-fact to be equivalent to the ground fact it corresponds to
when performing particular substitutions.

1140

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

In most automated planning encodings, so-called frame axioms logically specify the
necessary conditions for a change of polarity of a fact in between two adjacent time steps.
In other words, frame axioms are necessary to prevent a SAT solver from arbitrarily changing
the world state without executing a supporting action. In our encoding, frame axioms are
needed for ground facts only, as the pseudo-facts are well-defined by Eq. 13. We define a
fact’s support, supp((¬)f), as the set of actions which have f as a positive (negative) effect.
Also, we define a fact’s indirect support, isupp((¬)f), as the set of actions which are not in
supp((¬)f) but which have some pseudo-fact fp as a positive (negative) effect that can be
unified with f . We add two types of clauses to specify frame axioms:

(i) If a fact f changes its value, then either some reduction is responsible for the change
(logically represented by ¬priml

x), or some action directly supports this fact change, or some
action indirectly supports the fact change.

f lx ∧ ¬f lx+1 ⇒ ¬priml
x ∨

∨
a∈supp(¬f)

alx ∨
∨

a∈isupp(¬f)

alx (14)

¬f lx ∧ f lx+1 ⇒ ¬priml
x ∨

∨
a∈supp(f)

alx ∨
∨

a∈isupp(f)

alx

(ii) If fact f changes its value and some action a ∈ isupp((¬)f) is applied, then some set of
substitutions must be active which unifies an effect fp of a with f .

f lx ∧ ¬f lx+1 ∧ alx ⇒
∨

fp∈eff(a)−,
fp[κ1/c1]...[κk/ck]=f

(k∧
i=1

[κi/ci]
)

(15)

¬f lx ∧ f lx+1 ∧ alx ⇒
∨

fp∈eff(a)+,
fp[κ1/c1]...[κk/ck]=f

(k∧
i=1

[κi/ci]
)

5.1.3 Literal Trees for Sets of Substitutions

Frame axioms (ii) in the above rule are not in Conjunctive Normal Form (CNF). As such,
for their encoding we require a transformation of Disjunctive Normal Form (DNF) into
CNF when a features multiple effects which can be unified to f . We perform a simple
transformation over a tree of Boolean literals which we can encode easily into CNF.

We build a tree rooted at the sequence of implicants from Eq. 15 which then branches
over the possible substitution choices. Fig. 10 illustrates such a tree and the resulting
clauses. We insert each valid set of substitutions into the tree by transforming the set into a
sorted sequence and appending it to the header as a new branch. This is not necessarily the
optimal construction of the tree in terms of its size (another ordering of the substitutions
may lead to fewer nodes and branches overall), yet we believe that in practice this simple
strategy is an acceptable compromise between construction speed and encoding size, espe-
cially considering that the arity of predicates is commonly very small in planning domains
(see Table 3, Chapter 7.3.1). We can then encode equivalent CNF clauses by traversing
the tree and adding a clause for each node which has substitutions as child nodes: The
clause consists of the negated literals of the current branch up to the parent (as implicants)

1141

Schreiber

¬f lx

f lx+1

olx

[κ1/c2][κ1/c1] [κ1/c3]

[κ2/c4] [κ2/c5] [κ2/c4]

Header

[κ2/c6]

fxl ∨ ¬fx+1
l ∨ ¬olx ∨ [κ1/c1] ∨ [κ1/c2] ∨ [κ1/c3]

fxl ∨ ¬fx+1
l ∨ ¬olx ∨ ¬[κ1/c1] ∨ [κ2/c4] ∨ [κ2/c5]

fxl ∨ ¬fx+1
l ∨ ¬olx ∨ ¬[κ1/c2] ∨ [κ2/c6]

fxl ∨ ¬fx+1
l ∨ ¬olx ∨ ¬[κ1/c3] ∨ [κ2/c4]

Figure 10: Exemplary literal tree (left) and corresponding clauses in CNF (right) where the
intended consequence of each clause (when written as an implication) is underlined.

and the children in positive form (as possible consequences). No additional variables are
required.

5.1.4 Argument Type Restrictions

Assume in the Factories domain that we can transport resources not only with trucks but
with airplanes as well, and that trucks and airplanes share a common “vehicle” type τ .
While some operation deliver(r, λ, l, ν) to transport resource r from λ to l may introduce
ν as a pseudo-constant of type τ , some child operations drive to(ν, ·) and fly to(ν, ·) may
force ν to be of the type “truck” or “airplane”. More generally, it can happen that a child
restricts the valid domain τ of a pseudo-constant from an earlier layer to some τ ′ ⊂ τ .

We explicitly deal with argument type restrictions by either forbidding all illegal sub-
stitutions or enforcing one of the valid substitutions:

∀c ∈ τ \ τ ′ : olx ⇒ ¬[κ/c] (16)

olx ⇒
∨
c∈τ ′

[κ/c] (17)

We dynamically decide on whether to encode Eq. 16 or Eq. 17 based on which of the sets
induces a smaller overall number of Boolean literals. Empirically we found that oftentimes
one of the two sets is very small.

5.1.5 Actions with Contradictory Effects

In PDDL and, by extension, in HDDL we allow an operator o to have both f and ¬f as
an effect. Seeming contradictory at first glance, it is indeed consistent with the common
semantics of applying an action in automated planning: First all negative effects are deleted
from the state and then all positive effects are added to the state (e.g. Ghallab, Nau, and
Traverso (2004), p. 30 Def. 2.7). To demonstrate the use of such a construct, consider
a simple operator goto(v, x, y) where v is a vehicle and x and y are waypoints, with a
precondition at(v, x) and two effects ¬at(v, x), at(v, y). When we instantiate some action
goto(V,L, L) from this operator, the two effects become contradictory. Yet, depending on

1142

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

the intention of the domain modeler, the action may still be important because at some
point it may be required to execute the action of V going from L to L, i.e., staying there.

In encodings generated from ground representations, each action can be trivially pre-
processed by deleting each effect ¬f for which f is also an effect. In our lifted encoding,
whether an action contains contradictory effects generally depends on which substitutions
are applied. Our encoding specified so far may then logically imply both f lx and ¬f lx at the
same time, leading to a contradiction and rendering the formula unsatisfiable.

Our solution to this problem is to encode effects in the following way: Each positive
effect of action a is encoded normally. For each negative effect f ∈ eff(a)− we collect all
positive effects f ′ ∈ eff(a)+ such that f and f ′ share the same predicate. We then compute
the set Σ of all substitution sets which unify f with such an f ′. We distinguish three cases:

1. If Σ = ∅, then there are no conflicting positive effects for negative effect ¬f and the
effect will be encoded normally as in Eq. 6.

2. If ∅ ∈ Σ, i.e., f is already unified with some f ′ ∈ eff(a)+ without applying any
substitution, then f and f ′ are syntactically equal: The negated effect is discarded
because it is always overridden by the positive effect.

3. Otherwise, Σ := {Σ1, . . . ,Σm} where each Σi unifies some f ′ ∈ eff(a)+ with f . We
enforce that either the negative effect holds or one of these unifications is active:

olx ⇒ ¬fplx+1 ∨
m∨
i=1

∧
[κ/α]∈Σi

[κ/α] (18)

Let us take a closer look at the above literals of the form [κ/α]. Whenever one effect’s
argument κ is a pseudo-constant while the other’s α is a constant, [κ/α] is a substitution
variable. Also, at least one of κ and α must be a pseudo-constant: For constants c 6= c′,
substitutions of the form [c/c′] are invalid and substitutions of the form [c/c] are redundant
and hence omitted. What remains is the special case of unifying a pair of pseudo-constants,
i.e., κ′ := α is a pseudo-constant as well. For each such case we introduce a new Boolean
variable and give it the meaning: “κ and κ′ are equal.“

To have a variable [κ/κ′] assume this meaning, we introduce additional clauses: First
the intersection of both domains, I = dom(κ) ∩ dom(κ′), and the respective differences,
D := dom(κ) \ I and D′ := dom(κ′) \ I, are computed. If I is empty, then the pseudo-
constants cannot be equal: [κ/κ′] is false. Otherwise, we encode clauses to guarantee that
[κ/κ′] holds if and only if both pseudo-constants are substituted with the same constant:

∀c ∈ I : [κ/κ′] ⇒ ([κ/c]⇔ [κ′/c]) (19)

∀c ∈ I : ([κ/c] ∧ [κ′/c])⇒ [κ/κ′]

∀c ∈ D : [κ/c] ⇒ ¬[κ/κ′]

∀c ∈ D′ : [κ′/c] ⇒ ¬[κ/κ′]

In practice, we realize Eq. 18 with literal trees (Chapter 5.1.3) and encode Eq. 19 whenever
a new equality variable emerges which did not occur before.

1143

Schreiber

5.1.6 Dominated Operations

Last but not least, we turn to the situation where some operation o dominates another
operation o′ as described in Chapter 4.4. Whenever o becomes active as a child of one of
the parents of o′ (but no parent of o), we restrict the pseudo-constants of o to be equivalent
to those of o′. Again, we make use of variables [κ/κ′] as defined above.

∀op ∈ Pl,x | o′ ∈ children(op, z), o /∈ children(op, z) : (op)
l
x ∧ ol+1

sl(x)+z ⇒
∧
κ∈o,κ′∈o′

[κ/κ′] (20)

This concludes the set of clauses which are required for the correctness of our approach in
conjunction with the techniques described in Chapter 4.

5.2 Optimizations

In the following, we describe some improvements to our encoding which are not necessary
for correctness but are nevertheless important for the overall performance of our approach.

5.2.1 Accounting for Invariant Facts

So far, we explicitly encoded all facts which appear as a precondition or as an effect at some
position Pl,x. However, during the instantiation of our approach, we perform a reachability
analysis which allows us to identify invariant facts, i.e., (ground) facts which are definitely
true or definitely false for all reachable world states at a certain position (see Chapter 4.2).
We can exploit this knowledge to significantly cut the number of encoded facts and enforced
constraints as explained in the following.

First and foremost, we avoid to introduce Boolean variables for invariant facts. Instead
of encoding each relevant fact at the zeroth position, we adjust Eq. 2 as follows:

∀f ∈ Fl | f is invariantly true at Pl,x but not at Pl,x+1 : f lx (21)

∀f ∈ Fl | f is invariantly false at Pl,x but not at Pl,x+1 : ¬f lx
In words, at each layer Ll we delay the encoding and initialization of fact f as a Boolean
variable until the last position where f is invariant. Note that all facts are invariant at the
zeroth position due to sI and the closed-world assumption. Replacing Eq. 2 with Eq. 21
allows us to skip many trivial frame axioms which preserve the polarity of an unchanging fact
(see Eq. 14 with empty supports) and completely omits the encoding of globally invariant
facts. Whenever f is invariant and hence not encoded, we consequently do not encode the
equivalence of f to any present pseudo-fact fp (Eq. 13). However, to preserve correctness,
we may need to introduce some other constraints instead.

First, if an operation (action) at Pl,x has a ground precondition (effect) that is in-
variantly true at Pl,x (Pl,x+1), then we can simply omit Eq. 5 (Eq. 6) for this particular
constraint. Note that effects are never invariantly false due to construction, and operations
with invariantly false preconditions are pruned during instantiation.

Secondly, assume that operation o has k preconditions with pseudo-constants. For
each such precondition f , each ground fact resulting from f is either invariantly false or
invariantly true or not invariant. All non-invariant facts are handled as before by linking
them with a pseudo-fact (Eq. 13). In addition, we must make sure that no substitution

1144

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

is applied which transforms f into an invariantly false precondition. Generally, for each
1 ≤ i ≤ k, there are ni sets Πi1, . . . ,Πini of substitutions rendering precondition i invariantly
false, and mi remaining sets Σi1, . . . ,Σimi for which precondition i may hold (invariantly or
not). For each precondition, we either enforce that some valid substitution set must hold
(Eq. 22) or that none of the invalid substitution sets must hold (Eq. 23).

∀i ∈ {1, . . . , k} : olx ⇒
mi∨
j=1

∧
[c/κ]∈Σij

[c/κ] (22)

∀i ∈ {1, . . . , k} ∀j ∈ {1, . . . , ni} : olx ⇒
∨

[c/κ]∈Πij

¬[c/κ] (23)

As in Eq. 16–17, we encode the smaller of these sets. Eq. 22 is realized using literal trees.
As a special case, if all ground facts which may result from a precondition are invariant,

we can omit the pseudo-fact corresponding to the precondition (Eq. 13). This situation oc-
curs frequently in practice because most planning domains contain so-called rigid predicates
(Ghallab et al., 2004, p. 43) which are not featured in any action effect. In our Factories
example (Fig. 7), some rigid predicates are A↔B (there is a road between A and B) and
F1⇒R (factory F1 can produce resource R).

We now turn to effects with pseudo-constants. Each ground fact that can result from
such an effect is considered a possible fact change by our reachability analysis. As such, an
effect is never invariantly false. It can happen, however, that some substitutions which turn
the effect into a ground fact are known to be invalid because a precondition of the same
operation becomes invariantly false for these substitutions. We omit Eq. 13 for each such
substitution; the according substitutions are already prohibited by the precondition’s en-
coding. If all ground facts resulting from the effect are either omitted this way or invariantly
true, we do not encode an according pseudo-fact.

5.2.2 Reduction of Encoded Variables and Clauses

We employ miscellaneous techniques to reduce the number of encoded variables and clauses.
Variables priml

x are encoded only where necessary, i.e., at positions where both primitive
and non-primitive operations may occur. Otherwise, the variable is considered as constant
true or constant false respectively: If a literal is false it is not added to a clause, and if
a literal is true the whole clause is discarded.

Whenever a fact f must remain unchanged in between positions Pl,x and Pl,x+1, i.e.,
its direct and indirect supports are empty for both polarities, then we know that the two
corresponding Boolean variables must be equivalent: If f lx+1 is not already defined by
reusing a variable from the parent position, then we can omit the frame axioms for this
fact and instead use variable f lx from Pl,x to represent f lx+1 as well. We can completely
skip a position’s frame axioms whenever its parent position features a superset of possible
operations and both positions exclusively feature primitive operations, as in this case the
full frame axioms have already been specified above and do not need to be re-encoded.

Similarly, if a pseudo-fact occurs at positions Pl,x, Pl+1,sl(x) or at positions Pl,x, Pl,x+1,
then we reuse the prior variable if the two pseudo-facts encompass the same set of ground
facts and, in the latter case, if the pseudo-fact cannot change its polarity in between the
two positions.

1145

Schreiber

Our instantiation approach implies that an action occurring at some layer Ll will also be
contained and encoded at layers Ll+1, Ll+2, . . ., inducing clauses which repeatedly enforce
the action’s preconditions and effects at every layer. Instead, we define the child operation
of action a as the repetition a∗ of a. We do not encode any preconditions or effects for such
repetitions of actions as they are already enforced at an earlier layer and will be propagated
down. We treat a∗ just like a when we compute frame axioms and when we decode a plan.

5.3 Decoding a Plan

We now explain the process of decoding a classical and hierarchical solution from a satisfying
assignment to our encoding found by a SAT solver.

Assume that the encoding Ll′ of layers L0 through Ll′ is satisfiable and that a satisfying
assignment A to all variables is available. We define that an operation o is active at Pl,x iff
A(al

′
x) = true. Similarly, a substitution [κ/c] is active at Pl,x iff A([κ/c]) = true.

We first decode a plan π (see Def. 1) from A: We begin with an empty plan π := 〈〉.
For each position index x = 0, . . . , |Ll′ | − 1 we find an active action a ∈ Pl′,x. If a is an
ε-action, we discard it. Otherwise, if a is ground, we append it to π. Otherwise, for each
pseudo-constant κ of a we find an active substitution [κ/c] and substitute all occurrences
of κ in action a with c. The resulting ground action ã is appended to π.

To obtain the hierarchical solution leading to π (see Def. 2) we begin with a graph H
without any edges and a single node (r0, 0, 0) which represents the initial reduction r0 at
the zeroth position of layer L0. We traverse all layers in the order of their instantiation.
For each position Pl+1,sl(x)+z where l + 1 > 0, we first examine the parent node (o, l, x) in
H. If o is an action, then we ignore the child position and continue. Otherwise we find
an active child operation o′ at Pl+1,sl(x)+z, we add a new node (õ′, l + 1, sl(x) + z) where
õ′ is the ground representation of o′ as explained above for actions ã, and we add edge
((o, l, x), (õ′, l + 1, sl(x) + z)) to H.

We illustrate this decoding process with our Factories example in Fig. 7: We obtain π
by traversing L4 from left to right and collecting all active actions which are not ε-actions.
For each pseudo-constant in each action, we apply the according highlighted equivalence in
the top left corner of Fig. 7. Remember that the reduction goto noop(θ, C) at P4,6 is treated
as an action but is omitted from π, as explained in Chapter 4.1.2. Fig. 7 also contains a
representation of the hierarchical solution H: Each position with a highlighted operation
corresponds to a node in H except for positions with repeated actions from an earlier layer
(P3,1, P4,1, P2,3, etc.) and positions where an ε-action is active.

5.4 Correctness

In the following, we establish our proof of correctness for our encoding on an intuitive level.
The proofs themselves are found in Appendix A.

First, we show some important fundamentals for further arguments.

Lemma 1. For any satisfying assignment A for Ll′(Π) there is exactly one active operation
at each position Pl,x for l ∈ {0, . . . , l′} and x ∈ {0, . . . , |Ll| − 1}.

Lemma 1 follows from the introduced at-most-one and primitiveness constraints.

1146

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

Lemma 2. The result π of decoding a plan from a satisfying assignment A for Ll′(Π) as
described in Chapter 5.3 is well-defined and unambiguous.

To show Lemma 2 we use Lemma 1 and the fact that there is exactly one active substitution
for each pseudo-constant. Next, we establish a mapping of satisfying assignments of fact
variables to world states:

Lemma 3. Let A be a satisfying assignment for Ll′(Π). Then for each position Pl,x we can
unambiguously infer a world state sl,x based on A and sI .

The mapping (A, sI) 7→ sl,x := {f | A(f lx) = true} ∪ {f ∈ sI | A(f lx) = ⊥} achieves the
desired: The world state consists of all facts which are explicitly true plus all facts which
are (yet) unencoded but hold in the initial state.

In order to reason about the correct application of actions, we show that whenever a
particular action with pseudo-constants is active, all preconditions and effects of the implied
ground action are enforced correctly.

Lemma 4. Consider a satisfying assignment A for Ll′(Π) and an active operation o at
position Pl,x which becomes a ground operation õ through zero or more active substitutions.
Then the following holds:
(i) pre(õ)+ ⊆ sl,x and pre(õ)− ∩ sl,x = ∅.
(ii) If õ is an action, then sl,x+1 = (sl,x \ eff(õ)−) ∪ eff(õ)+.

Lemma 4 follows from the constraints for preconditions and effects together with the defi-
nition of pseudo-facts and their link to ground facts given particular substitutions.

An induction over the length of the final layer (using Lemma 4) leads us to the following
central property which guarantees that any classical plan we decode is executable:

Lemma 5. When a plan π = 〈a0, . . . , ak−1〉 is decoded from a valid satisfying assignment
A for Ll′(Π), there is a sequence of states Q = 〈s0 := sI , s1, . . . , sk〉 such that pre(ai)

+ ⊆ si,
pre(ai)

− ∩ si = ∅, and si+1 = (si \ pre(ai)
−) ∪ pre(ai)

+ hold for 0 ≤ i < k.

In the proof we show that the desired sequence of states is essentially equivalent to the
sequence of states sl′,x defined as in Lemma 3 except for additional redundant world states
induced by ε-actions. Next, we turn to the hierarchical solution for our problem.

Lemma 6. Let H be the decoded hierarchical solution for Ll′(Π). Then the structure of H
resembles an actual hierarchical solution, i.e., H satisfies (1) and (2) from Def. 2.

This “structural integrity” of our hierarchical solution H is shown by an induction over the
depth of H where we find that only valid child nodes, matching a subtask of an earlier node,
are added to H. Similar to the executability of the classical plan shown in Lemma 5, we
argue that the hierarchical plan is executable as well:

Lemma 7. Let (π,H) be the decoded (classical and hierarchical) solution for the Lilotane
encoding Ll′(Π) for TOHTN planning problem Π. Traverse H as described in (3) in Def. 2
with the node ordering relation (g, l, x) ≺ (g′, l′, x′)↔ x < x′ and maintain a state s which
is initialized as sI and updated with the effects of each visited action. Then the preconditions
of all visited actions and reductions hold in s.

1147

Schreiber

For this proof we make use of Lemma 5 and 6 as well as the argument that each reduction
precondition is being enforced at the correct position. Assembling all the parts, we can
finally show that our encoding functions as intended:

Theorem 2. Let (π,H) be the decoded (classical and hierarchical) solution for the Lilotane
encoding Ll′(Π) for TOHTN planning problem Π. Then π is a valid solution for Π and H
is a valid hierarchical solution for Π.

We prove this theorem by transforming the recursive formulation of Def. 1 into an
iterative procedure where the decisions of how to achieve the next task are dictated by the
simultaneous traversal of H. In particular, we make use of a one-to-one correspondence
between the tasks T to be achieved and the frontier of nodes in H to be visited.
As a side note, we point out that above proof also implies the correctness of the previous
Tree-REX encoding (Schreiber et al., 2019b) for the much simpler case where no pseudo-
constants are introduced, only ground operations are added, and all relevant facts are
encoded at position zero of each layer. This has not been shown before.

While we do not provide an explicit proof for the completeness of our encoding, note
that a similar chain of arguments can be made to show that whenever a problem Π has
a solution (π,H) at depth l′, our encoding will be satisfiable at layer l′ and enable us to
extract a valid solution from a satisfying assignment.

5.5 Complexity

In the following, we assess the complexity of the Lilotane encoding, providing the worst case
asymptotic number of variables and clauses which emerge during the encoding of Ll′(Π).

We first establish a simplified worst-case model for the structure of the problem at hand,
the worst case being a hierarchy which indefinitely grows exponentially both regarding
the size of its layers and the number of possible operations at each position. Let X :=
max{|subtasks(m)| | m ∈ M} be the maximum expansion size, i.e., the maximum number
of subtasks, of any method. Let B be the maximum lifted branching factor per subtask, i.e.,
the maximum number of methods with different signature names which achieve the same
task. We can see that, given the initial layer size |L0| = 1, the size of layer l′ is in O(X l′).
Furthermore, given that the number of encoded operations per position can multiply by a
factor of B for each further layer, the total number R of encoded operations is in O(X l′Bl′).

Let V be the maximum arity (i.e., the number of arguments) of any operation, and let
U be the maximum number of free arguments of any method with respect to the task it
achieves. Let C be the number of constants, and let P (E) be the maximum number of
preconditions (effects) of any operation. Then the number of encoded variables is in

O(X l′(F +Bl′(UC + P + E + V 2))) (24)

as we derive in Appendix B. Essentially, at each position we need to encode each fact (X l′F);
and for each operation at some position, we need to encode each new pseudo-constant
(X l′Bl′UC), each pseudo-fact originating from a precondition or an effect (X l′Bl′(P +E)),
and possibly an equality variable for each pair of pseudo-constants in the action (X l′Bl′V 2).

Let us compare this to the complexity of the previous Tree-REX approach (Schreiber
et al., 2019b) for a worst-case result of grounding: When expanding a position in the hierar-
chy, each operation at some position can lead not to B, but instead to B ·CU new operations

1148

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

for each subtask because we fully ground all operations. This creates O(X l′(BCU)l
′
) op-

erations in total and overall leads to O(X l′(F + (BCU)l
′
)) variables. However, also note

that for Tree-REX the number of operations per position cannot grow indefinitely but is
bounded by O((|M |+ |O|)CV), i.e., the number of syntactically instantiateable operations,
while for Lilotane the number of operations at each position is unbounded: At each layer,
new pseudo-constants and thus “new” operations may be introduced. This is an issue which
we counteract with shared pseudo-constants and dominating operations (Chapter 4.4).

Regarding the number of encoded clauses, we arrive at an asymptotic number of

O
(
X l′Bl′

(
l′ logB + C(U logC + V 2) + F (P + Y E) + Y E2

))
(25)

permanent clauses (i.e., not counting X l′ assumptions), as is derived in Appendix B.
If the maximum operation arity V , the maximum number U of unbound arguments in

a method, and the maximum predicate arity Y are negligible constants, we obtain

O
(
X l′Bl′

(
l′ logB + C logC + F (P + E) + E2

))
(26)

clauses. Thereby terms l′ logB and C logC are caused by at-most-one constraints over the
operations at each position and over the substitutions for a pseudo-constant, term F (P+E)
is implied by (among others) the semantics of pseudo-facts, and term E2 originates from
the encoding of contradictory action effects.

For Tree-REX, applying our complexity model under above assumptions yields

O
(
X l′
(
T · (log T + P + E) + F

))
(27)

clauses (see Schreiber et al., 2019b, Complexity) where T := min{Bl′CUl
′
, (|M |+ |O|)CV }.

The advantages of Tree-REX are that only a constant number of clauses is added for
each fact, each precondition and each effect at each position and that, again, there is an
upper bound on the number of operations at each position. By contrast, while Lilotane
may encode more clauses per operation due to its more complex handling of facts, its much
smaller initial branching factor leads to fewer operations by a factor of CUl

′
as long as the

upper bound for T is not reached.
The exponential complexity of both encodings, which are compilations of 2-EXPTIME-

complete TOHTN planning to NP-complete SAT (see Chapter 2.1.2), is presumably un-
avoidable. However, it is worth noting that the number of clauses and variables encoded
by Lilotane is exponential only in l′ while for Tree-REX the encoding size is exponential
both in l′ and in either Ul′ or V . Furthermore, we observed that the theoretical issue of
Lilotane producing an unbounded number of operations at each position is rarely a problem
in practice because shared pseudo-constants and dominating operations (see Chapter 4.4)
can unify operations which have a similar or equal meaning.

We conclude from the perspective of asymptotic complexity that the Lilotane encoding,
despite being a generalization of the Tree-REX encoding, is not a pure improvement of the
latter but rather a new and to some degree orthogonal approach which focuses on reducing
the number of encoded operations, in particular at the first hierarchical layers, at the cost
of a more complex logic related to the problem’s facts. Evaluations in Chapter 7 will shed
more light on these considerations and complement our theoretical study in this chapter
with empirical practical insights.

1149

Schreiber

6. Plan Improvement

The length of a given plan π = 〈a0, . . . , ak−1〉 is given by |π| = k. We are interested
in finding as short plans as possible because in a real-world application each action will
require some effort in order to be executed: In most cases, shorter plans are more efficient
and executed faster. This simple cost model which considers all actions equally costly is
used by related work on quality-aware and/or optimal HTN planning (Behnke et al., 2019b;
Schreiber et al., 2019b) and will be used in the following as well.

Similar to its precursor Tree-REX, the base algorithm of Lilotane for finding a plan
generally produces sub-optimal plans. At various positions we introduce ε-actions which do
not contribute to the plan length. Consequently, in order to minimize |π| we must maximize
the number of active ε-actions at the layer l where a plan was found. We can see that this
optimization (however it is realized) will yield an optimal plan at layer l, which we call
a depth-optimal plan, but not necessarily a globally optimal plan: A different choice of
methods which require a larger depth to be fully expanded may be able to induce an overall
smaller number of actual actions, i.e., a higher number of ε-actions. Hence, we may find an
even shorter plan by admitting a deeper hierarchy (see Behnke et al., 2019b). In our plan
improvement approach we will first construct a depth-optimal plan but no globally optimal
plan. Then we argue how our approach can eventually find and output an optimal plan.

6.1 Previous Approaches

As a point of departure, consider the approach of Tree-REX by Schreiber et al. (2019b):

1. After finding an initial plan π0 at layer Ll′ , the primitiveness of all positions at Ll′ is
enforced permanently by adding Eq. 10 as unit clauses instead of assumptions.

2. We encode further variables and clauses to count the length of a plan in such a way
that specific assumptions can restrict the possible plan lengths for a single SAT solver
call. We initialize iteration counter i = 0.

3. We add assumptions to forbid any plan length equal to or greater than the previous
plan length |πi| and call the SAT solver again. In case of satisfiability, we decode the
new plan πi+1, count its new length |πi+1| < |πi|, and repeat 3. for incremented i. In
case of unsatisfiability we return πi which has then proven to be depth-optimal.

This procedure belongs to a broad class of optimization approaches which contain as a
subprocedure a decision problem “Is there a solution of cost ≤ k?” for changing k. This
class of approaches has been explored by Rintanen (2004) for the case of scheduling SAT-
based planning horizons and was generalized by Streeter and Smith (2007). Both identified
query strategies that also incorporate time limits for the decision procedure and are in
general more sophisticated than the above linear search strategy.

Faced with a similar search problem, Behnke et al. (2019b) considered three simple
strategies for optimal (non-incremental) SAT-based HTN planning, namely a linear in-
crease of k beginning at zero (INC), a linear decrease of k beginning at a value deter-
mined by some initial plan (DEC), and a bisection search between these two initial bounds
(BIN). They found that the three strategies performed very similarly overall. Independently,

1150

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

Schreiber (2018) evaluated three equivalent search strategies for the plan length optimiza-
tion of Tree-REX and found the DEC strategy the most appealing. This strategy produces
a series of i ≥ 0 SAT results concluded by a single UNSAT result. As such, an improved
plan can be decoded from every intermediate result what leads to an effective anytime ap-
proach. In addition, a SAT solver often finds a plan of some length k′ < k which allows to
skip tests for any of the intermediate values, resulting in good practical performance.

6.2 Our Approach

We build upon the approach of Tree-REX with the DEC strategy as described above and
further exploit its monotonic nature for efficient incremental SAT solving.

We use variables which represent that the plan length up to position Pl′,x−1 is exactly
equal to some k whereas the counter variables of the Tree-REX encoding represent that
the plan length up to Pl′,x−1 is at least some k. Furthermore, we do not näıvely encode
these variables for all possible positions and all plan lengths from 0 to |Ll′ |: Instead, while
traversing the final layer from left to right we maintain a “corridor” of possible plan lengths,
update its bounds at each step, and only encode new variables where absolutely necessary.

At position Pl′,0, the plan so far is of length zero, so we set our initial bounds to d0 = 0
(“down”) and u0 = 0 (“up”). Consequently there are u0 − d0 + 1 = 1 possible plan lengths
up to this position, so we encode a single variable v0,0 and enforce it to be true.

Consider position Pl′,x for x ≥ 0 where we have previous bounds dx and ux and encoded
ux − dx + 1 different variables representing the possible lengths dx, . . . , ux of partial plans
up to position x (exclusively). We analyze position x: If only ε-actions and no other actions
are possible at this position, we know that our plan length will stay the same. For instance,
this can happen frequently if an operation is pruned retroactively (see Chapter 4.2.3) and
leaves behind a number of otherwise empty child positions. In this case we do not encode
new variables but carry over the variables we already encoded to the next position, and we
keep the bounds dx+1 = dx and ux+1 = ux. Conversely, if no ε-actions can occur at this
position, we know that our plan length will increase exactly by one. Again, we just carry
over the existing counter variables and update dx+1 = dx + 1 and ux+1 = ux + 1.

In the third case where both normal actions and ε-actions may occur at position x, we
need to introduce new variables: We know that the plan length will either remain the same
or increase by one, so we set dx+1 = dx and ux+1 = ux+1. If v0, . . . , vux−dx are the previous
variables, we encode new variables v′0, . . . , v

′
ux+1−dx+1

and the following clauses:

(aε)
l′
x ∧ vi ⇒ v′i (28)

¬(aε)
l′
x ∧ vi ⇒ v′i+1 (29)

In words, we update the current plan length dx+i to dx+i + 1 if a normal action is active
and to dx+i otherwise. We do not need to enforce the other direction of these implications.

In the end, for upper and lower bounds û and d̂ we can successively forbid plan lengths by
adding restrictions of the form ¬vû−d̂,¬vû−d̂−1, . . . to the encoding. We add these clauses not
as assumptions but as permanent unit clauses: SAT solvers can perform more simplification
once a unit constraint is known to be permanent (e.g., Nadel & Ryvchin, 2012, p. 243).
This optimization is only possible due to the monotonic nature of the DEC search strategy.

1151

Schreiber

Let µ ≤ |Ll′ | be the number of “mixed positions” at layer Ll′ where both ε-actions and
normal actions can occur. Then the number of variables of our plan improvement encoding

is V ≈ µ2

2 and the number of clauses is V times a small constant. In case of µ ≈ |Ll′ |
these complexity measures are equivalent to the encoding from Tree-REX which always

leads to approximately
|Ll′ |2

2 variables. Empirically we noticed that µ is often noticeably
smaller than |Ll′ | and that even a modest difference leads to considerably fewer variables
and clauses due to the squared complexity.

6.3 Finding Globally Optimal Plans

Using our approach to find a depth-optimal plan, we sketch a simple non-terminating pro-
cedure which lets Lilotane eventually output a globally optimal plan under the assumption
that enough time and memory are available:

Find an initial plan at some layer Ll and perform plan improvement until a depth-
optimal plan is found. Beginning with k = 1, instantiate and encode k additional layers,
find an initial plan at layer Ll+k and perform plan improvement until a depth-optimal plan
is found; then update l := l + k and repeat for doubled k.

The number k of further layers to instantiate and encode until another plan improvement
is performed increases exponentially. As such, the clauses required for plan improvement
are encoded only a logarithmic number of times with respect to the number of additional
layers. Also note that for this procedure we need to enforce the primitiveness of operations
and forbidden plan lengths as assumptions and not as permanent unit clauses because they
must be reset when another instance of plan improvement is performed at a later layer.

We consider this mode of operation to be useful in scenarios where the planner oper-
ates under a fixed time limit. Hitting this time limit (or a memory limit), the planner is
interrupted and outputs the best found plan so far.

7. Evaluation

In the following, we discuss an extensive evaluation of Lilotane which consists both of the
IPC 2020 and our own evaluations.

7.1 Implementation

We have implemented our approach in C++17. Our source code is available at www.

github.com/domschrei/lilotane and all experimental data is available at www.github.

com/domschrei/lilotane-experimental-data. We make use of pandaPIparser (Behnke
et al., 2020) for parsing and performing light preprocessing of HDDL planning problems.
We make use of an efficient implementation of unordered hash sets and maps (Ankerl, 2020)
to map signatures of facts and operations to variables and other related objects. We used
the Re-entrant Incremental SAT solver API (IPASIR, see Balyo, Biere, Iser, & Sinz, 2016)
and link our software with a SAT solver. As was the case for Tree-REX, we found Glucose
(Audemard & Simon, 2009) to empirically work best among various solvers for the family
of SAT problems produced by our encoding approach. As such, we linked Lilotane with
Glucose for all evaluations.

1152

www.github.com/domschrei/lilotane
www.github.com/domschrei/lilotane
www.github.com/domschrei/lilotane-experimental-data
www.github.com/domschrei/lilotane-experimental-data

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

7.2 Lilotane as a SAT-Based HTN Planner

As a natural first stage of our evaluations, we compare our planner to its precursor Tree-REX
and to PANDA-SAT. We included the up-to-date version of Lilotane, a quality-aware variant
which finds a depth-optimal plan at the layer where the initial plan was found (LilotaneQ),
Tree-REX without plan improvement, and three configurations of PANDA-SAT: the totally
ordered version and hence most direct competitor (PANDA-totSAT, Behnke et al., 2018),
the best performing version supporting partial orderings (PANDA-SAT, Behnke et al.,
2019a), and the best performing optimal HTN planner to date (PANDA-SAT-OPT, Behnke
et al., 2019b). We use PANDA in conjunction with SAT solver Cryptominisat (Soos, Nohl,
& Castelluccia, 2009), employ the configuration sat-exists-forbidden-implication for
the partial order and optimal variant and use the BIN search strategy for the optimal version.

Unfortunately, neither PANDA in its current form nor Tree-REX are equipped to handle
the benchmarks of the IPC due to technical limitations such as parsing errors and a differing
input model. As such, we limited our evaluation to the domains which have been prepared
for the comparison of the two planners by Schreiber et al. (2019b) with the help of G.
Behnke. While ten of these domains were part of the published evaluation of Tree-REX
vs. PANDA-SAT, we include two more domains (Elevator and Zenotravel) which have been
used exclusively for tuning purposes in the original publication. Due to similar technical
limitations we cannot compare the plans output by Tree-REX and by Lilotane in a fair
manner, which is why we did not include a plan improving variant of Tree-REX.

We fixed some notable issues with the grounding backend of Tree-REX to ensure a fair
comparison. As acknowledged first by Behnke et al. (2020), two false assumptions are made
in the grounding procedure which we rectified: that each constant from the problem is
contained in each action’s and each method’s arguments at most once, and that actions
without any effects can be discarded. As a third change, we have removed a condition
in the code which caused to discard actions named nop. We also removed an erroneous
precondition in the Zenotravel domain which led to unsolvable problems in the patched
variant of Tree-REX and fixed an inaccuracy in the translated HDDL model of Transport.

We set a timeout of five minutes and a memory limit of 8GB. The experiments have been
conducted on a desktop PC running Ubuntu 18.04 with a quad-core Intel i7-6700 processor
clocked at 3.40GHz and with 32GB of DDR4 RAM. The runs were performed sequentially.

0 50 100 150 200 250 300

Run time t / s

0

50

100

150

200

#
in

st
an

ce
s

so
lv

ed
in
≤
t

s

Lilotane

LilotaneQ

Tree-REX

PANDA-totSAT

PANDA-SAT

PANDA-SAT-OPT

Figure 11: Overview of run times of PANDA-SAT, Tree-REX, and Lilotane

1153

Schreiber

7.2.1 Overview

An overview of the results regarding run times is given in Fig. 11; more detailed plots for
each domain are given in Fig. 16, Appendix C. The optimal configuration of PANDA com-
pleted 64 out of 242 instances. However, note that PANDA-SAT-OPT employs an anytime
algorithm and found some plan on 193 instances (not pictured). The two configurations
for partial orderings and total orderings performed very similarly and both solved 200 in-
stances: As PANDA-SAT acknowledges each problem to be totally ordered, we believe that
it falls back to an encoding variant of PANDA-totSAT. Tree-REX solved 230 instances and
Lilotane solved 232 instances. The quality-aware variant LilotaneQ completed plan im-
provement on 221 instances, including all 189 instances for which PANDA-SAT-OPT found
some plan. Among these commonly solved instances, LilotaneQ found a shorter plan in 89
cases and matched the plan length of PANDA-SAT-OPT in the remaining 100 cases. In
particular, LilotaneQ found an optimal plan wherever PANDA found an optimal plan.

Detailed comparisons of Lilotane with PANDA-totSAT and with Tree-REX are shown
in Fig. 12. Each point (x, y) corresponds to a single instance. For points along the diagonal
y = x both approaches performed equally well. For points on the i-th diagonal above
(below) the central diagonal, Lilotane performed better (worse) by i orders of magnitude.

In the left graphs, raw solving times are compared. Both PANDA and Tree-REX have
a considerable overhead associated to every run which leads to a large relative difference in
run times at the bottom left, i.e., for easier instances. This gap is much more pronounced
for PANDA which has a quite slow preprocessing (Behnke et al., 2020).

218 out of 242 problems (90.0%) have been resolved by both Lilotane and Tree-REX,
and 197 problems (81.4%) have been resolved by both Lilotane and PANDA. Among the
instances solved by both, on 98.2% Lilotane outperformed Tree-REX, and on 68.4% (7.3%)
Lilotane outsped Tree-REX by more than one (two) order(s) of magnitude. On 99.5%
(97.5% / 59.9% / 5.1%) Lilotane outperformed PANDA (by more than one / two / three
orders of magnitude). Satellite is the only domain where Lilotane is slower than Tree-REX
for multiple instances. This domain heavily features recursive subtask relationships. We
conjecture that the grounding procedure of Tree-REX is able to simplify these recursive
relationships through grounding which leads to a smaller problem to encode and search.

7.2.2 Encoding Properties

In the right graphs in Fig. 12, the number of encoded clauses is compared, providing more
insight into the relative quality of our encoding while implementation-dependent perfor-
mance differences are excluded. For some domains, the respective set of points resembles
a line of slope m > 1 in log-log scale, which mathematically implies a polynomial factor
in encoding size as the problem size increases. This effect occurs in a pronounced fashion
for the domains Childsnack, Depots and Zenotravel in comparison to Tree-REX and for
Childsnack, Transport and Gripper in comparison to PANDA. We found this observation
to confirm our claim from Chapter 3.1 that grounding can lead to a severe blowup in prob-
lem size. For instance, the methods in the Childsnack domain which decompose each initial
task have four free arguments. Each of these arguments has O(n) possible values where n
defines the problem difficulty. For each initial task, Tree-REX instantiates O(n4) reductions
whereas Lilotane instantiates O(1) reductions. Both instantiate O(n) facts.

1154

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

10−1 100 101 102

Runtime of Lilotane / s

10−1

100

101

102

R
u

n
ti

m
e

of
T

re
e-

R
E

X
/

s

y=x

4 timeouts of Tree-REX

2 timeouts of Lilotane

10−1 100 101 102

Runtime of Lilotane / s

10−1

100

101

102

R
u

n
ti

m
e

o
f

P
A

N
D

A
-t

ot
S

A
T

/
s

y=x

32 timeouts of PANDA-totSAT

0 timeouts of Lilotane

103 104 105 106 107 108

Clauses encoded by Lilotane

103

104

105

106

107

108

C
la

u
se

s
en

co
d

ed
b
y

T
re

e-
R

E
X

y=x

103 104 105 106 107 108

Clauses encoded by Lilotane

103

104

105

106

107

108

C
la

u
se

s
en

co
d

ed
b
y

P
A

N
D

A
-t

o
tS

A
T

y=x

Barman

Gripper

Blocksworld

Hiking

Childsnack

Rover

Depots

Satellite

Elevator

Transport

Entertainment

Zenotravel

Figure 12: Direct comparison of run times and encoded clauses of Lilotane vs. PANDA-
totSAT and Lilotane vs. Tree-REX. Diagonal lines denote orders of magnitude of difference.

By contrast, we do not observe any clearly exponential differences in encoding size. In
the Childsnack domain in particular, the problem hierarchy has a constant depth of two,
hence the described blowup in the number of child operations occurs only once before the
problem is solved. More generally speaking, most domains do not have a hierarchy which
expands indefinitely with respect to the density of operations (as assumed in our worst case
analysis in Chapter 5.5) but instead become quite simple after few layers.

1155

Schreiber

Entertainment is the only domain for which the Lilotane encoding is consistently larger
– by up a factor of 50. For these instances, the grounding procedures of Tree-REX and
PANDA prune large parts of search space before encoding them. Our algorithm, however,
prunes these parts retroactively when they turn out to be impossible to achieve, after the
clauses were already added. A comparison of run times suggests that the pruning done
by disabling the respective clauses is still effective whereas PANDA and Tree-REX pay a
considerable price for grounding the problem. However, these results do indicate that our
lifted approach may be at a disadvantage in some particular cases where the ground problem
becomes substantially smaller and simpler than the lifted representation.

Figure 13: Distribution of occurrences of different clause categories per domain.

In order to investigate which categories of clauses are the most expensive in our encoding
and how this compares to the prior Tree-REX encoding, we visualized the relative occurrence
of different kinds of clauses in Fig. 13. In the Tree-REX encoding, substantially more
operations are encoded due to full grounding, hence at-most-one constraints over operations
are the most expensive category of clauses followed by reduction constraints (i.e. non-
primitiveness and preconditions) and expansion constraints. In the Lilotane encoding, it
is the frame axioms which consistently make up large parts of the encoding, which is why
we split them into direct frame axioms (Eq. 14) and indirect frame axioms (Eq. 15). After
frame axioms, the definitions of pseudo-facts are the next most costly clauses, followed
only then by reduction constraints (which also include constraints of substitutions, Eq. 22–
23). Simply put, one may say that for Tree-REX the encoding of operations is the main
bottleneck and for Lilotane the encoding of (pseudo-)facts is the main bottleneck.

For the Entertainment domain, there is no clause category which is alone responsible
for the much larger encoding Lilotane produces. However we do see an increased ratio
of reduction constraints. Meanwhile Tree-REX encodes Entertainment problems with the
lowest ratio of at-most-one constraints throughout all domains, implying a simple task

1156

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

network with few alternatives. These findings are consistent with our explanation regarding
the Entertainment domain that Lilotane encodes an overall much larger problem as it has
no access to valuable information gained from grounding.

minimum median maximum average

PANDA-totSAT 2.00 2.31 7.36 2.50
Tree-REX 2.46 2.66 12.89 3.13
Lilotane 2.25 2.95 5.56 3.15

Table 1: Distribution over average clause lengths reported per solved instance

To set the number of clauses in relation to the average size of each clause, Tab. 1 provides
basic measures for the average clause length reported per instance for each approach. We
can see that the median of average clause lengths of Lilotane encodings is larger than that of
PANDA (Tree-REX) by 0.64 (0.29) literals on average: While the prior approaches encode
large numbers of two-literal constraints between individual operations such as at-most-
one constraints, the majority of clauses produced by Lilotane are related to frame axioms
and pseudo-facts. Such clauses contain three or more literals as we simplify away clauses
which merely enforce the equivalence between two variables (Chapter 5.2.2). As such, while
Lilotane may produce clauses which are longer by up to 30% on average, it often produces
fewer clauses by a factor of ten or more as displayed in Fig. 12.

Lilotane LilotaneQ P-OPT P-SAT P-totSAT Tree-REX

Avg. (GB) 0.128 0.099 0.931 1.083 1.069 0.790
Median (GB) 0.026 0.024 0.494 0.551 0.515 0.369

Table 2: Mean and median of memory peaks per solved instance

7.2.3 Resource Usage

We measured the amount of memory each of the planners used: As shown in Table 2,
Lilotane is much more memory efficient than its competitors on average. LilotaneQ has the
lowest memory footprint because we only considered completed runs – the instances solved
by Lilotane but left unfinished by LilotaneQ naturally tend to be large problems.

Figure 14: Partition of run times by stage

1157

Schreiber

Fig. 14 shows the share on the total run time which certain stages in the planning
algorithms contribute. For each competitor, we sum up the time spent in each stage over all
successful runs. The stage of preprocessing encompasses any tasks related to grounding and
transforming the problem into a fit form. For Lilotane there is an additional “Instantiation”
stage that captures the time needed for the instantiation of hierarchical layers. The encoding
stage encompasses the creation of clauses as well as, in the case of Tree-REX, the one-time
creation of a schematic encoding which is later handed to a separate interpreter application.
For Tree-REX there is an additional stage “File I/O” capturing the time needed to write
the schematic encoding file. Finally, “Miscellaneous” refers to any portion of the run time
which we could not attribute to any major stage.

While previous planners spend around two thirds of their run time on preprocessing
and encoding, Lilotane spends most of its time (more than 85%) on SAT solving. Together
with the improved run times compared to previous approaches, this result indicates that
Lilotane successfully reduces the overhead associated with SAT-based planning as it shifts
effort from expensive preprocessing to the actual search for a plan during SAT solving.

7.3 International Planning Competition 2020

In the following, we shed light on the International Planning Competition (IPC) 2020
(Behnke et al., 2020b) and the performance of Lilotane in this competitive event.

7.3.1 Benchmarks

The IPC was based on an exceptionally large and diverse set of benchmarks for hierarchical
planning: In previous work the co-existence of various input formats of HTN planners hin-
dered direct performance comparisons (e.g., Nau et al., 1999; Schreiber et al., 2019b; Höller
et al., 2020), but for the IPC a de-facto standard format for hierarchical planning problems
was established and many domain authors contributed a large variety of benchmarks.

Table 3 lists averaged properties of old and new benchmarks in accordance with our
complexity model. On average, larger benchmarks were included than most of the pre-
vious common benchmarks from research in HTN planning. Each of the prior domains
Blocksworld(-GTOHP), Childsnack, Depots, Hiking, Rover, and Satellite has been included
as a benchmark in the IPC with an identical hierarchical model (as hinted by identical en-
tries in all but the last three columns for the respective rows). For each of these domains
except for Satellite, considerably larger instances have been added, as can be seen in the
differences in the last three columns which represent the mean size of input problems.

The IPC benchmarks are also consistent with our assumption that the maximum arity
Yf of predicates is always a small constant (four in the IPC’s Entertainment domain and
at most three everywhere else) and is mostly smaller but never larger than the maximum
arity of actions (Ya) and reductions (Yr). The latter two, by contrast, can scale linearly with
problem size (see Blocksworld-HPDDL, Multiarm-Blocksworld, and Snake) due to universal
quantifications in preconditions. PandaPIparser compiles these out by adding one additional
argument to the operation for each constant in the quantified domain. This also leads
to accordingly high numbers for the maximum number of preconditions Pa,Pr. However,
no pseudo-constants are added for these artificial arguments because each encompasses a

1158

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

Domain # O M X B U Pa Pr E Yf Ya Yr C |sI | |T |
Barman 20 23 21 7 3 5 7 4 8 2 6 8 41 80 14
Blocksworld 20 13 10 4 2 1 4 4 5 2 2 2 24 29 24
Childsnack 20 9 2 5 2 5 5 5 5 2 5 9 77 101 16
Depots 20 17 14 4 4 3 5 4 6 2 5 5 28 45 8
Elevator 20 16 15 3 3 2 5 5 2 2 3 3 32 299 1
Entertainment 12 15 23 3 9 2 10 7 4 2 4 4 45 403 3
Gripper 20 8 4 6 2 3 3 2 3 2 3 6 27 28 12
Hiking 20 20 20 9 4 5 8 7 8 3 8 8 27 52 1
Rover 20 30 16 4 3 3 6 4 4 3 6 6 58 877 16
Satellite 20 14 12 3 3 2 5 3 3 2 4 4 121 176 79
Transport 30 6 10 4 3 2 4 1 4 2 5 5 25 43 9
Zenotravel 5 11 9 4 3 3 8 8 4 2 9 12 15 20 4

AssemblyHierarchical 30 17 20 2 8 2 9 6 3 3 7 7 116 368 1
Barman-BDI 20 33 23 6 3 5 7 7 8 2 6 6 59 89 11
Blocksworld-GTOHP 30 13 10 4 2 1 4 4 5 2 2 2 138 148 144
Blocksworld-HPDDL 30 14 14 4 5 2 200 200 5 2 200 200 200 413 1
Childsnack 30 9 2 5 2 5 5 5 5 2 5 9 262 390 62
Depots 30 17 14 4 4 3 5 4 6 2 5 5 83 150 48
Elevator-Learned 147 41 25 5 3 2 4 3 2 2 3 3 47 660 16
Entertainment 12 19 26 7 4 2 7 2 2 4 4 7 45 403 1
Factories-simple 20 17 11 4 3 3 4 3 4 3 4 4 73 98 1
Freecell-Learned 60 283 304 7 15 6 14 8 7 2 8 8 52 177 4
Hiking 30 20 20 9 4 5 8 7 8 3 8 8 44 87 1
Logistics-Learned 80 56 54 3 8 3 4 4 2 2 5 5 55 48 22
Minecraft-Player 20 21 24 6 4 3 4 4 2 3 5 16 752 217363 1
Minecraft-Regular 59 15 14 6 3 2 3 3 2 3 5 16 22150 129799 1
Monroe-Fully-Obs. 20 68 84 6 10 3 6 1 6 3 5 8 91 419 1
Monroe-Partially-Obs. 20 67 83 6 10 3 5 1 6 3 5 8 91 420 1
Multiarm-Blocksworld 74 15 15 4 5 2 54 54 5 2 54 55 58 118 4
Robot 20 6 13 2 4 3 3 3 3 3 3 3 60 97 1
Rover-GTOHP 30 30 16 4 3 3 6 4 4 3 6 6 95 2351 28
Satellite-GTOHP 20 14 12 3 3 2 5 3 3 2 4 4 121 176 79
Snake 20 7 5 3 3 3 28 28 8 3 28 28 29 149 1
Towers 20 7 10 2 3 3 4 3 6 2 5 5 14 111 1
Transport 40 4 6 4 3 2 4 0 4 2 5 5 55 125 26
Woodworking 30 15 51 3 4 4 9 0 7 2 12 12 110 241 22

Table 3: Averaged per-domain properties of HDDL benchmarks (after preprocessing), di-
vided into prior benchmarks (see Chapter 7.2) and IPC benchmarks. Left to right: Number
of operators, methods; max. expansion size, max. methods per task, max. free non-trivial
arguments per method; number of preconditions of actions / reductions, effects; arity of
facts / actions / reductions; number of constants / initial true facts / initial tasks.

domain of size one. For the computation of the maximum number of unbound arguments
U , we only considered non-trivial free arguments with a domain of size greater than one.

7.3.2 Rules and Participants

Planners have been rated according to the following metric: If a planner solves an instance
within one second, a score of 1 is attributed. If a planner solves an instance within 1 < t ≤ T
seconds (where T = 30 min is the time limit), a score of 1 − log(t)/ log(T) is attributed.

1159

Schreiber

This so-called agile metric has several consequences: Planners which find plans very quickly
are favored over slower but more robust planners. For instance, if a planner solves five
instances in 2 seconds while not solving five other instances, it is attributed a score of
around 5 · 0.91 = 4.55. If a planner solves each of the ten instances in two minutes, it is
attributed a score of around 10 · 0.36 = 3.6. Furthermore, plan quality is ignored.

The competition consisted of two tracks: Total Order and Partial Order. Six planners
were submitted to the Total Order track while only three planners were submitted to the
Partial Order track (one of which was disqualified). Among these six planners are the
preliminary version of Lilotane, the lifted progression search planner HyperTensioN, the
ground progression search planner PDDL4J in a Total Order and a Partial Order version,
the lifted progression search planner SIADEX, and the plan-space planner pyHiPOP. All
planners are described in the IPC proceedings (Behnke et al., 2020b).

The following improvements were not part of the IPC version of Lilotane: Our optional
anytime plan improvement procedure (Chapter 6); various techniques for reducing clauses
and distinct variables (Chapter 5.2.2); retroactive pruning which not only logically disables
the pruned operation but also prunes the subtree relying on it (Chapter 4.2.3); and sharing
pseudo-constants among operations and eliminating dominated operations (Chapter 4.4).

HyperT. Lilotane P4JTO P4JPO SIADEX pyHiPOP
Domain NC IPC NC IPC NC IPC NC IPC NC IPC NC IPC

AssemblyHierarchical 0.10 0.08 0.17 0.12 0.07 0.06 0.07 0.06 0.00 0.00 0.03 0.02
Barman-BDI 1.00 1.00 0.80 0.74 0.55 0.48 0.55 0.49 1.00 0.92 0.00 0.00
Blocksworld-GTOHP 0.53 0.43 0.77 0.64 0.53 0.41 0.57 0.43 0.47 0.35 0.03 0.01
Blocksworld-HPDDL 1.00 0.89 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Childsnack 1.00 1.00 0.97 0.87 0.70 0.46 0.70 0.47 0.73 0.50 0.00 0.00
Depots 0.80 0.76 0.80 0.73 0.77 0.57 0.77 0.60 0.73 0.70 0.00 0.00
Elevator-Learned 1.00 1.00 1.00 0.78 0.01 0.01 0.01 0.01 0.07 0.07 0.01 0.01
Entertainment 0.00 0.00 0.42 0.14 0.42 0.19 0.25 0.27 0.00 0.00 0.08 0.07
Factories-simple 0.15 0.14 0.20 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.01
Freecell-Learned 0.00 0.00 0.15 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hiking 0.83 0.83 0.73 0.60 0.57 0.32 0.50 0.39 0.00 0.00 0.00 0.00
Logistics-Learned 0.28 0.26 0.55 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Minecraft-Regular 0.98 0.88 0.54 0.35 0.39 0.32 0.39 0.32 0.59 0.33 0.00 0.00
Minecraft-Player 0.25 0.25 0.05 0.03 0.05 0.03 0.05 0.03 0.15 0.13 0.00 0.00
Monroe-Fully-Obs. 0.00 0.00 1.00 0.78 1.00 0.49 1.00 0.58 0.50 0.27 0.00 0.00
Monroe-Partially-Obs. 0.00 0.00 1.00 0.73 0.05 0.03 0.05 0.03 0.00 0.00 0.00 0.00
Multiarm-Blocksworld 0.11 0.11 0.05 0.03 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
Robot 1.00 0.96 0.55 0.52 0.30 0.27 0.30 0.27 0.00 0.00 0.05 0.05
Rover-GTOHP 1.00 0.92 0.77 0.55 1.00 0.60 0.87 0.65 1.00 0.77 0.20 0.14
Satellite-GTOHP 1.00 1.00 0.75 0.59 1.00 0.44 0.50 0.73 0.00 0.00 0.35 0.19
Snake 1.00 1.00 0.90 0.74 1.00 0.71 1.00 0.71 0.35 0.29 0.10 0.03
Towers 0.85 0.77 0.50 0.39 0.80 0.58 0.75 0.61 0.55 0.47 0.10 0.09
Transport 1.00 1.00 0.88 0.76 0.85 0.65 0.82 0.71 0.03 0.03 0.45 0.23
Woodworking 0.23 0.23 1.00 0.98 0.20 0.17 0.20 0.17 0.10 0.10 0.13 0.09

Total rel. score 14.12 13.51 14.57 11.60 10.25 7.47 9.35 6.36 6.29 4.93 1.6 0.94

Table 4: Central results of the IPC 2020. NC = normalized coverage, IPC = agile runtime
score. Higher is better, best scores per line are printed in bold for each metric.

1160

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

7.3.3 Results

The results of the IPC evaluation are given in Tab. 4. In addition to the IPC score explained
above, we included a second important metric named coverage. This simple metric leads to
a score of 1 for a solved instance and a score of 0 for an unsolved instance. As each run was
repeated ten times, we count an instance as solved if it was solved in any of the runs. We
normalized each coverage score per domain by the number of instances in a domain (e.g.,
a normalized coverage score of 0.6 means that 60% of all instances within the domain were
solved). The IPC scores were normalized in the same way.

Regarding IPC scores, which decided the official ranking, Lilotane scored second, be-
hind HyperTensioN by a decent margin. All further competitors scored significantly lower:
Notably, Lilotane outperformed ground approach PDDL4J on all but four domains (En-
tertainment, Minecraft-Player, Rover, and Towers). HyperTensioN scored best on 15/24
domains and Lilotane scored best on 8/24 domains; only a single domain (Entertainment)
was neither won by HyperTensioN nor by Lilotane. Lilotane’s worst performances are on the
domains Blocksworld-HPDDL, Minecraft(-Player), and Multiarm-Blocksworld. We noticed
that each of these domains leads to deep and large hierarchical task networks which favor
greedy progression search planners over planners such as Lilotane which are required to in-
stantiate the entire hierarchy with all alternatives up to the layer where a plan can be found.
Furthermore, as discussed above, due to compiled universal quantifications, Blocksworld-
HPDDL and Multiarm-Blocksworld feature many preconditions per operator which are
comparably costly for our encoding. By contrast, our planner excels on domains such as
Monroe (complex goal and task recognition problems; see Blaylock & Allen, 2005; Höller,
Behnke, Bercher, & Biundo, 2018) and Woodworking (large manufacturing and processing
tasks with a high number of arguments per operator and method).

Regarding coverage, Lilotane solved three more instances (548) than HyperTensioN
(545) and scored slightly better. Yet, Lilotane solved 14 of these instances only in some of
the runs, while HyperTensioN solved each of its instances consistently with one exception.
Still, overall we observe that while the agile score benefits the very fast execution times of
HyperTensioN, Lilotane performs similarly to HyperTensioN in terms of robustness and,
unlike HyperTensioN, is able to solve some instance(s) on every single domain.

7.4 Follow-Up Evaluation

We now head on to our own evaluation based on the benchmarks of the IPC in order
to account for some aspects of our planner which the IPC did not cover yet. First, we
improved Lilotane in various aspects after the submission deadline of the IPC so we expect
better results with our final planner than what the competition version already achieved3.
Secondly, as solution quality did not matter in the IPC, we also want to evaluate the quality
of our approach with and without plan improvement on a large set of benchmarks.

As PDDL4J, SIADEX, and pyHiPOP were mostly dominated regarding both IPC scores
and coverage, we do not include them in the following evaluations. We do include the winner
HyperTensioN and different versions of Lilotane: (i) Prelilotane (the preliminary version
submitted to the IPC), (ii) Lilotane (the up-to-date version without quality awareness),

3. Note that we integrated each of these improvements before gaining access to the benchmarks of the IPC
and only applied bugfixes thereafter, hence no fine-tuning with respect to the benchmarks was done.

1161

Schreiber

(iii) Lilotane-Q (a quality-aware configuration which finds the depth-optimal plan at the
first layer where a plan is found), and (iv) Lilotane-Q+ (a configuration which instantiates
one extra layer after finding an initial plan and then finds the depth-optimal plan). For
approaches (iii) and (iv), unfinished runs where a valid but not necessarily fully optimized
plan was output on termination are considered unsolved.

The evaluations were conducted on an server with an AMD EPYC 7702P 64-Core pro-
cessor (plus hyperthreading) clocked between 2.0 and 3.35 GHz with 1024 GB of DDR4
RAM, running Ubuntu 20.04. We executed up to 63 runs in parallel and set a time limit of
30 minutes and a memory limit of 8GB as in the IPC.

0 500 1000 1500

Run time t / s

250

300

350

400

450

500

550

#
in

st
an

ce
s

so
lv

ed
in
≤
t

s

Lilotane

HyperTensioN

Prelilotane

LilotaneQ

LilotaneQ+

0 2000 4000 6000 8000

Plan length x

250

300

350

400

450

500

550

#
so

lv
ed

in
st

a
n

ce
s

w
it

h
|π
|≤

x

Lilotane

HyperTensioN

Prelilotane

LilotaneQ

LilotaneQ+

Figure 15: Run times and found plan lengths of HyperTensioN and Lilotane

7.4.1 Overview

A first overview on the results is provided in Fig. 15. In Appendix C, detailed per-domain
plots are provided in Fig. 17–18, and more details on Lilotane’s behavior split by domain
and by algorithm stage are provided in Fig. 19–20 and in Tab. 6.

HyperTensioN solved 539 out of 892 (60.4%) instances and Prelilotane solved 529 in-
stances (59.3%). The lower coverages compared to the IPC data provided above can be
explained by (a) different hardware and (b) the fact that we performed only one run for
each competitor-instance combination. HyperTensioN retains its status being fastest on the
majority of benchmarks. However, up-to-date Lilotane solved 558 instances (62.6%) making
it more robust in the long run. LilotaneQ finished its plan improvement on 523 instances
and LilotaneQ+ finished on 496 instances. In other words, the quality-aware configurations
of Lilotane found a depth-optimal plan at the first solvable layer on 93.7% of the solved
instances and a depth-optimal plan at the subsequent layer on 88.9%.

Concerning the planners’ coverage in conjunction with found plan quality, Lilotane out-
performs HyperTensioN. The plans output by HyperTensioN, although found rapidly, are
longer than the plans found by Lilotane even without employing plan improvement. This
is because Lilotane always finds a plan at a point where the hierarchy is as shallow as
possible, which strongly correlates with the potential length of plans. By contrast, Hy-
perTensioN performs a kind of depth-first search and hence traverses search space more
greedily, resulting in larger plans.

1162

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

Domain # slv. HyperTensioN Prelilotane Lilotane LilotaneQ LilotaneQ+

AssemblyHierarchical 3 0.80 1.00 1.00 1.00 1.00
Barman-BDI 16 0.55 0.64 0.63 0.92 1.00
Blocksworld-GTOHP 16 0.87 0.89 0.92 1.00 1.00
Blocksworld-HPDDL 1 0.91 1.00 1.00 1.00 1.00
Childsnack 29 1.00 1.00 1.00 1.00 1.00
Depots 23 1.00 0.96 0.97 1.00 1.00
Elevator-Learned 144 0.35 0.83 0.83 1.00 0.98
Factories-simple 3 0.58 0.62 0.67 1.00 1.00
Hiking 21 0.98 0.96 0.96 1.00 1.00
Logistics-Learned 22 0.78 0.72 0.71 1.00 1.00
Minecraft-Player 1 1.00 0.85 0.74 1.00 1.00
Minecraft-Regular 28 1.00 0.85 0.87 1.00 1.00
Multiarm-Blocksworld 4 0.91 0.82 0.85 1.00 1.00
Robot 11 0.51 1.00 1.00 1.00 1.00
Rover-GTOHP 20 0.51 0.69 0.69 0.99 0.96
Satellite-GTOHP 13 0.50 0.58 0.60 1.00 0.99
Snake 17 0.28 0.92 0.89 1.00 1.00
Towers 9 1.00 1.00 1.00 1.00 1.00
Transport 33 0.73 0.75 0.74 1.00 0.99
Woodworking 7 0.94 0.93 0.95 0.98 0.98

Total 421 15.20 17.01 17.02 19.89 19.90

Table 5: Normalized plan length scores over all IPC instances for which HyperTensioN and
all configurations of Lilotane found some plan.

7.4.2 Plan Quality

Table 5 provides more insights into the plan quality of the involved approaches. We make use
of satisficing IPC scores: If π is the shortest plan found by some algorithm for some instance,
a score of |π|∗/|π| is attributed where π∗ is some reference plan. In our case, π∗ is the best
plan found by any of the competitors for this instance. To exclude coverage results, we only
considered the instances for which each competitor found some (not necessarily final) plan.
For each competitor we summed up the scores within a domain and then normalized the
result by the number of solved instances in that domain.

Computed over all 421 such instances, all configurations of Lilotane outperform Hyper-
TensioN with respect to this metric. Unsurprisingly, Prelilotane and Lilotane achieve very
similar results: None of the employed post-IPC improvements impact plan lengths.

Our plan improvement procedure in LilotaneQ improves upon Lilotane’s score by almost
three points. The degree of improvement heavily depends on the domain model. For
instance, in the Factories domain, which truck to use and where to construct which factory is
up to the planner. This makes the domain well-suited for evaluating quality-aware planning
(Sönnichsen & Schreiber, 2020). By contrast, other domains such as Childsnack or Towers
feature a rigid hierarchy and leave no room for plan improvement.

Another interesting result is how few improvement LilotaneQ+ brings over LilotaneQ.
Only on 17 instances from six domains did we observe that instantiating an additional layer
before performing plan improvement leads to a shorter final plan within time and memory
constraints, and the only domain where this difference is reflected in the above scores is
Barman-BDI. Also note that LilotaneQ+ occasionally scores lower than LilotaneQ: This

1163

Schreiber

is because plan improvement on the first solvable layer can be much easier to perform
than on the subsequent layer, especially if the layers’ complexity grows considerably. Still,
among all IPC instances, LilotaneQ+ finished on a total of 477 instances without any
improvement over LilotaneQ. We deduce that depth-optimal plans found at the first solvable
layer are rarely improvable any further when the hierarchy is extended by another layer.
We expect the improvement induced by deepening the hierarchy to further diminish if
we instantiate even more layers, leading us to the conclusion that, in practice, employing
LilotaneQ provides a good tradeoff between high plan quality and acceptable run times and
often even finds plans of optimal or near-optimal quality.

7.5 Discussion

From the presented evaluations involving other SAT-based planners, we conclude that our
grounding-free approach of encoding the lifted problem representation directly into proposi-
tional logic is highly efficient and generally leads to the smallest propositional logic formulae
of any SAT-based HTN approach to date. While there are planning domains where a priori
grounding significantly reduces the effective size of the problem to encode, these merits can
be outweighed by Lilotane’s faster planning procedure and lower overhead. Furthermore,
Lilotane is significantly more memory-efficient than previous SAT-based planners. All in
all, we are confident that Lilotane is the most efficient SAT-based TOHTN planner to date.

From the results of the IPC we observed that Lilotane compares very favorably to the
submitted grounding-based approaches. In comparison with the arguably best TOHTN
planner to date, HyperTensioN, the results are less one-sided. Lilotane is more robust than
HyperTensioN if sufficient time is available, but often takes more time than the ultimately
more lightweight greedy progression search planner. We believe that this may be an intrin-
sic property of SAT-based approaches compared to progression search approaches: Some
planning problems are very easy to resolve greedily such that the detour over propositional
logic imposes unnecessary overhead. However, investing additional time to solve an instance
with Lilotane is worthwhile because the found plans are of high quality, even with a config-
uration that does not perform any plan improvement. As such, we consider HyperTensioN
and Lilotane to correspond to two different points on the pareto-frontier between speed,
robustness, and quality in the current state-of-the-art in TOHTN planning.

8. Conclusion

We have presented an approach of grounding-free SAT-based TOHTN planning motivated
by the combinatorial blowup which grounding can induce. To process the lifted problem
representation, we proposed a lazy instantiation approach coupled with a reachability analy-
sis and the introduction of non-committal pseudo-constants when we encounter free method
arguments. We presented an according SAT encoding and showed its correctness. We per-
formed a worst-case analysis where we found that our encoding is exponential along fewer
dimensions than the prior Tree-REX encoding but introduces more complex logic related to
the facts in the problem. We enhanced an existing anytime plan improvement procedure to
make Lilotane quality-aware. We presented evaluations which suggest that Lilotane outper-
forms existing SAT-based TOHTN approaches, produces the smallest SAT encodings for
TOHTN problems to date, and has a lower memory footprint. While often outperformed

1164

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

by state-of-the-art TOHTN planner HyperTensioN in terms of run times, Lilotane excels
regarding its robustness and the high-quality plans it finds.

8.1 Outlook

In the near future, we expect our approach and its implementation to find adoption as
an efficient and reliable TOHTN planner. Our lifted encoding approach may influence
neighboring areas of research, most naturally general HTN planning as well as further
extensions such as HTN planning with task insertion (Geier & Bercher, 2011). Furthermore,
some of the insights we gained may be transferable to lifted SAT-based classical planning.

From a theoretical perspective, we are interested in investigating more abstract encod-
ings which encode every single argument in the task network on a symbolic level. While we
are unsure about the practical efficiency of such an approach, we believe that we may find
an encoding which encodes a maximum of |O|+ |M | operations at each position and whose
complexity in relation to the lifted problem description does not feature any superquadratic
terms except for the unavoidable exponential growth of layer sizes.

It remains to be seen whether both lifted and ground SAT-based HTN planning ap-
proaches remain significant and are refined further, excelling on different kinds of planning
problems. As we have seen in our evaluations, there are some planning domains where
grounding a problem brings great advantage while on some other domains it is next to
infeasible to do so. We believe that our reachability analysis can be improved further by
computing a better approximation of the possible fact changes an operation may effect.
This could lead to much earlier and more effective pruning of irrelevant operations and may
render Lilotane more competitive regarding the domains where grounding is highly effective.
It is an interesting question for future research whether the “best of both worlds” can be
achieved by creating an efficient instantiation approach which keeps the problem lifted but
effectively performs the same a priori pruning that is achieved by high quality grounding.

Last but not least, having circumvented a major scaling problem of prior approaches,
we intend for future work to improve the scalability of TOHTN planning even further by
exploring possible approaches to parallelize Lilotane. We believe that an efficient parallel
and distributed hierarchical planner will not only do justice to the true (multi-core and
cloud-like) nature of today’s computing but, with the help of distributed SAT solving, will
also be able to resolve much larger problems than any prior HTN planning system.

Acknowledgments

The author would like to thank the reviewers for providing valuable feedback and criti-
cism which significantly improved the publication, and Markus Iser, Simon Reiß, Ekkehard
Schreiber, Nico Wildermuth, and Marvin Williams for proofreading. Furthermore, many
thanks to Peter Sanders for his encouraging support as thesis advisor; to the organizers of
the IPC 2020 for making this important competitive event possible; and to Gregor Behnke
for fruitful discussions regarding the results of the IPC 2020. Last but not least, many
thanks to Damien Pellier, Humbert Fiorino, and Tomáš Balyo who introduced the author
to the exciting topics of SAT-based planning and HTN planning.

1165

Schreiber

This project has received funding from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (grant agr. No. 882500).

Appendix A. Proof of Correctness

Theorem 1. For some l and x ≥ 0, let Ol := 〈o0, . . . , ox〉 be a sequence of operations where
oi is chosen among all possible operations at position Pl,i of some problem Π. Expand each
oi ∈ Ol into some sequence Oi of actions such that O := O0 ◦ . . . ◦Ox is executable from sI .
(1) If fact f holds after the execution of O, then f is reachable at Pl,x+1 according to Sx+1

l .
(2) Similarly, if f does not hold after executing O, then ¬f is reachable at Pl,x+1.

Proof. First, we note that the sets±Sx+1
l grow monotonically in x. This observation directly

follows from their definition.
(1) If f holds after executing O, then either (i) f ∈ sI and f never changed, or (ii)

the execution of O causes f as an effect in some action. In case (i), f is reachable at
Pl,x+1 by definition. In case (ii), there is some action of which causes f as a direct effect,
implying f ∈ pfc(of) and either (a) of = oj for 0 ≤ j ≤ x or (b) of is a (transitive)
child of one such oj . In case (a), PFC+

l,j+1 ⊇ pfc(of) 3 f by definition, and in case (b),

PFC+
l,j+1 ⊇ pfc(oj) ⊇ pfc(of) 3 f because of is a child of oj . In both cases (a) and (b)

PFC+
l,j+1 is added to +Sj+1

l and, since j ≤ x and +Sxl grows monotonically in x, we obtain

f ∈ +Sx+1
l , hence f is reachable according to Sx+1

l .
(2) If f does not hold after executing O, then either (i) f /∈ sI and f never changed,

or (ii) as (1)(ii) but with a negative effect. In case (i), f /∈ +Sx+1
l follows because f was

never added to +Sx+1
l . Consequently, f /∈ sI ∪ +Sx+1

l and hence ¬f is reachable. In case

(ii), similar to (1)(ii) we obtain f ∈ PFC−l,x+1 and consequently f ∈ −Sj+1
l . Due to the

monotonicity of −Sxl , we obtain f ∈ −Sx+1
l , hence ¬f is reachable.

Lemma 1. For any satisfying assignment A for Ll′(Π) there is exactly one active operation
at each position Pl,x for l ∈ {0, . . . , l′} and x ∈ {0, . . . , |Ll| − 1}.

Proof. At position P0,0 exactly the initial reduction is active due to construction and Eq. 1.
At each further position Pl,x at most one action and at most one reduction is active due to
Eq. 4 which, together with Eq. 3, ensures that at most one operation is active. Also, there is
at least one active operation at each position: If there were not a single active operation at
some position, then, due to Eq. 8 and our instantiation technique where all offset positions
are filled with children (possibly with ε-actions), the parent position would be empty as
well. Repeatedly applying this argument leads to a contradiction to Eq. 1.

1166

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

Lemma 2. The result π of decoding a plan from a satisfying assignment A for Ll′(Π) as
described in Chapter 5.3 is well-defined and unambiguous.

Proof. First we observe that at the final layer l′ there must be an action (and no reduction)
at every position due to Eq. 10 together with Lemma 1.

Next we argue that the substitution of pseudo-constants with actual constants in any
active operation o is unambiguous. For each pseudo-constant κ, due to Eq. 11 at most one
substitution can be active. Furthermore, if the operation op from which κ originated is
active, then due to Eq. 12 each pseudo-constant κ must have at least one and thus exactly
one constant substituted for it. The only possibility for o to be active yet op to be inactive
is that o came into effect by dominating some other operation o′ which has another parent
and does not contain κ. In that case, Eq. 20 will enforce at least one substitution of κ to be
active. Otherwise, by construction κ can only occur in the hierarchy induced by the origin
operation of κ. Hence, for each active operation in a solution there is exactly one set of
active substitutions which replace each pseudo-constant with actual constants.

From these observations and Lemma 1 we conclude that there is exactly one operation at
each spot in the hierarchy with exactly one ground representation each, and the final layer
only consists of actions. This renders our plan decoding well-defined and unambiguous.

Lemma 3. Let A be a satisfying assignment for Ll′(Π). Then for each position Pl,x we
can unambiguously infer a world state sl,x based on A and sI .

Proof. At each position Pl,x there is a set of variables f lx which represent ground facts.
Each such fact f has a polarity assigned to it by A. Additionally, some positive facts may
not have been encoded (yet) at Pl,x but must hold nevertheless: These are exactly the
unencoded facts which are contained in the initial state (see Chapter 5.2.1). Consequently
we define sl,x := {f | A(f lx) = true} ∪ {f ∈ sI | A(f lx) = ⊥}.

Lemma 4. Consider a satisfying assignment A for Ll′(Π) and an active operation o at
position Pl,x which becomes a ground operation õ through zero or more active substitutions.
Then the following holds:
(i) pre(õ)+ ⊆ sl,x and pre(õ)− ∩ sl,x = ∅.
(ii) If õ is an action, then sl,x+1 = (sl,x \ eff(õ)−) ∪ eff(õ)+.

Proof. Eq. 5 and Eq. 6 enforce that each precondition of o holds at position Pl,x and (if o
is an action) each effect of o holds at position Pl,x+1; however, each precondition or effect
may contain pseudo-constants. Eq. 18 and Eq. 19 ensure that the effects are enforced in a
consistent way: If some (possibly empty) set of active substitutions unifies a pair of effects
to be contradictory, i.e., {f,¬f} ⊆ pre(õ) for some f , then the positive effect is enforced as
usual while Eq. 18 and Eq. 19 allow the negative effect to be ignored because an appropriate
set of substitutions is active.

As õ was obtained from o by substituting each of its pseudo-constants κ with the unique
substitution [κ/c] that is active in A, Eq. 13 enforces that any non-ground preconditions
and effects of o are logically equivalent to the respective ground preconditions and effects
of õ – as long as these ground facts are indeed encoded. Some ground precondition (effect)
f arising from a precondition (effect) of o through active substitutions may not have been
encoded because f is invariant there. In case of an effect, f must be invariantly true because

1167

Schreiber

due to construction an effect cannot be invariantly false. In case of a precondition, Eq. 22
or Eq. 23 prevent any combination of substitutions which unify a precondition of o with
an invariantly false fact, hence f must be invariantly true as well. It follows from the
correctness of our reachability analysis (Theorem 1) that f holds in sl,x. Hence, sl,x and
sl,x+1 induced by assignment A are consistent with the constraints of õ at Pl,x and Pl,x+1.

If o is an action, then any fact not featured as an effect does not change, following
from our frame axioms: As the position is primitive due to Eq. 3 if õ is an action, Eq. 14
constrains each fact to change only if an action from its direct or indirect support is active.
Hence, for each such fact f that changes its polarity, either o ∈ supp(f) or o ∈ isupp(f). In
the former case, f is a direct effect of o and it follows directly that f is also a direct effect
of õ. In the latter case, Eq. 15 implies that a set of substitutions must be active which
unify a pseudo-fact effect of o with f . As we know that the active substitutions for the
pseudo-constants of o unify o with õ, we also know that the respective pseudo-fact effect of
o must be an effect of õ as well.

Lemma 5. When a plan π = 〈a0, . . . , ak−1〉 is decoded from a valid satisfying assignment
A for Ll′(Π), there is a sequence of states Q = 〈s0 := sI , s1, . . . , sk〉 such that pre(ai)

+ ⊆ si,
pre(ai)

− ∩ si = ∅, and si+1 = (si \ pre(ai)
−) ∪ pre(ai)

+ hold for 0 ≤ i < k.

Proof. We construct the sequence of states Q from π and the states sl′,x induced by A.

When plan π contains k actions, the size of the final layer, k′ := |Ll′ |, may be larger
than k: Layer Ll′ contains k′ − k ≥ 0 ε-actions which do not contribute to π and which
have no preconditions or effects. We inductively construct Q for k′ ≥ 0.

For the base case k′ = 0 and π = 〈〉, we note that at position 0 all fact assignments must
be consistent with the initial state sI due to construction: When a fact is introduced at
some position, then its assignment is fixed according to the initial state (Eq. 2 or Eq. 21).
Consequently Q := 〈sI〉 fulfils above requirements.

Let k′ > 0. By induction, for some k < k′ we have a valid sequence of states Qk′−1 :=
〈s0, . . . , sk〉 for πk′−1 := 〈a0, . . . , ak−1〉 decoded from positions 0, . . . , k′− 1, and we want to
construct Qk′ for πk′ decoded from positions 0, . . . , k′. There is exactly one action active at
position k′ (see Lemma 2) which is either an ε-action or a normal action. In the former case,
we note by trivially applying Lemma 4 that sl′,k′ = sl′,k′−1, i.e., no fact changes are possible
over the course of this position, so Qk′ := Qk′−1 fulfils above requirements for the unchanged
plan πk′ = πk′−1. In the latter case, we have πk′ = πk′−1◦〈ã〉, where action ã was constructed
from the active action a at position k′ through a set of substitutions. We apply Lemma 4
and obtain pre(ã)+ ⊆ sl′,k′ , pre(ã)− ∩ sl′,k′ = ∅, and sl′,k′+1 = (sl′,k′ \ pre(ã)−) ∪ pre(ã)+.
As a result, setting Qk′ := Qk′−1 ◦ 〈sl′,k′+1〉 fulfils above requirements and concludes the
inductive construction of Q.

Lemma 6. Let H be the decoded hierarchical solution for Ll′(Π). Then the structure of H
resembles an actual hierarchical solution, i.e., H satisfies (1) and (2) from Def. 2.

Proof. First we note that the structure of H resembles the structure of hierarchical layers,
i.e., H is a tree where each node (o, l, x) has depth l within H and each of its outgoing
edges lead to nodes of depth l + 1. We perform an induction over the maximum depth
l′ ≥ 0 of H counted from its root (r0, 0, 0) and show that each node (o, l, x) corresponds to

1168

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

a valid operation o and, if o is a reduction, either resides at the maximum depth l′ or has
outgoing edges to valid child nodes in accordance to subtasks(o). All leaves being actions
then directly follows from the well-definedness of the plan decoding procedure (Lemma 2),
notably from only actions being active at the final layer l′.

Let l′ = 0. Then the only node in the graph is (r0, 0, 0) where r0 is fully ground and a
valid reduction of the problem by definition.

Let l′ > 0. Assume that H up to layer Ll′−1 fulfills each of the Lemma’s requirements.
We first show that each node at layer Ll′−1 has the correct number of children at layer Ll′ .
Let (o, l′ − 1, x) be a node at layer Ll′−1. If o is an action, then the node has no children
by construction. In the following, let o be a reduction. By construction, node (o, l′ − 1, x)
has n ≥ 0 outgoing edges to nodes (o′k, l

′, sl′−1(x) + zk) where each zk is a valid offset for
reduction o: 0 ≤ zk < el′−1,x. Each o′k is a ground instantiation of some child action or
reduction of o at offset zk. For each 0 ≤ zk < |subtasks(o)| there must be exactly one such
child node due to Eq. 8 and Lemma 1, and for zk ≥ |subtasks(o)| there are no such children
because by construction o induces ε-actions as children at those offsets which are never
added to H. As a consequence the given parent node has the correct number of children.

Next we show for 0 ≤ k < |subtasks(o)| that o′k from child node (o′k, l
′, sl′−1(x) + k)

matches the k-th subtask of o. Operation o′k was constructed from the original active
operation ô′k at position sl′−1(x)+k of layer l′ by a series of zero or more active substitutions.
We know from Eq. 8 and Eq. 9 that ô′k matches the k-th subtask of its parent ô from which
o was constructed, the only exception being differing pseudo-constant names if the original
child of ô was dominated by another operation (see Chapter 4.4). For each substitution
[κ/c] involved in the transformation of ô′k into o′k, pseudo-constant κ originated either (a)
from ô′k itself or (b) from parent ô or some common ancestor or (c) from (a parent of) an
operation which dominated the original child of ô. In case (a) we know that the argument
of ô′k which took κ as its value is a new, free argument not bound by ô. In case (b) we
know that κ is globally substituted with the same single constant c. In case (c), Eq. 20
sets κ equivalent to the original pseudo-constant, hence (a) or (b) applies. In all cases
the arguments of ô′k must correspond to the arguments of the k-th subtask of ô, hence o′k
matches the respective subtask of o.

Concerning argument types, the constant c which κ is substituted with is in the valid
domain of the respective argument of its origin operation due to Eq. 12. Furthermore,
Eq. 16 and/or Eq. 17 enforce any further restrictions to the type of κ in child operations.

All in all, o′k matches the k-th subtask of o: edge ((o, l′ − 1, x), (o′k, l
′, sl′−1(x) + k))

represents a valid subtask instantiation o′k of reduction o.

Lemma 7. Let (π,H) be the decoded (classical and hierarchical) solution for the Lilotane
encoding Ll′(Π) for TOHTN planning problem Π. Traverse H as described in (3) in Def. 2
with the node ordering relation (g, l, x) ≺ (g′, l′, x′)↔ x < x′ and maintain a state s which
is initialized as sI and updated with the effects of each visited action. Then the preconditions
of all visited actions and reductions hold in s.

Proof. When performing a depth-first traversal of H as specified, we traverse all action
nodes in exactly the order in which the respective actions occur in π. As changes to s are
made only when encountering an action node, it follows from Lemma 5 that whenever we

1169

Schreiber

visit an action node (a, l, x), s is equivalent to the state sl,x that can be inferred from A at
position Pl,x. In particular, the preconditions of each visited action are met in s.

In the following, we show that when we visit a reduction node (r, l, x) during the traversal
of H, the preconditions of r must hold in s. We know that r was constructed from some
active reduction r̂ and a set of substitutions, hence Lemma 4 implies that the preconditions
of r hold in the state sl,x inferred from A at position Pl,x. Therefore, we know that each
precondition f of r is either invariantly true at Pl,x or encoded as a direct fact constraint
as in Eq. 5, possibly via a pseudo-fact (Eq. 13).

In the first case, we know due to the correctness of our reachability analysis (Theorem 1)
that f must hold in all reachable states so far. In particular, f holds in sI and no action
visited so far may have changed it. For this reason, f also holds in s.

In the second case, due to Eq. 7, these constraints are propagated down to the final
layer Ll′ from where π was extracted. At this point, assume that we already visited k ≥ 0
actions. Consequently s = sk (where sk is defined in Lemma 5 as the intermediate state
after applying k actions) and we are currently traversing a subtree to the right of action
ak. It follows that the precondition constraints of r from layer Ll propagate down to a
position at the final layer where ak has already been applied but ak+1 has not yet been
applied, which is exactly where sk holds. As a consequence, fact constraints from layer Ll
also directly enforce the preconditions to hold in state sk and consequently in s.

Theorem 2. Let (π,H) be the decoded (classical and hierarchical) plan for the Lilotane
encoding Ll′(Π) for TOHTN planning problem Π. Then π is a valid solution for Π and H
is a valid hierarchical solution for Π.

Proof. We know due to Lemma 6 that H satisfies criteria (1) and (2) from Def. 2 for a
hierarchical solution. It remains to be shown that H satisfies criterium (3) for the decoded
plan π. Namely, we show the following: If Ω := 〈o1, o2, . . . , ok〉 is the sequence of operations
visited by a depth-first traversal of H with the node ordering relation (o, l, i) ≺ (o′, l′, j)⇔
i < j, then π is a (classical) solution for Π in such a way that Ω is a “witness” for which
operation should be applied at each recursive step of Def. 1.

Let T := 〈t0〉 be the initial tasks of Π where, in accordance with the transformation of
T described in Chapter 2.1.3, t0 is a virtual task with r0 as its only matching reduction.
Let Γ be the frontier of unvisited nodes during the depth-first traversal of H: Initially
Γ := 〈(r0, 0, 0)〉, and each step of the traversal removes node v from the front of Γ and
pushes the children of v with respect to ≺ to the front of Γ. Clearly, the i-th operation oi
in Ω corresponds to the node at the front of Γ after i− 1 nodes have already been visited.

In the following, we transform the recursive Definition 1 into an iterative procedure in a
straight forward manner to obtain a more natural proof. We maintain a state s initialized
with sI , a task sequence T initialized with T , and an action sequence P initialized with
π. At each iteration, if we can apply case 2 or case 3 of Def. 1 to problem Π := (D, s, T)
and to solution π := P and obtain some altered Π′ and π′, then we update s, T , and P
accordingly. Specifically, we apply the i-th operation visited in H at the i-th iteration. If
there is no such operation left and we can apply case 1 instead, the procedure terminates.

We show invariant (I): At all times of this procedure, |Γ| = |T | holds and for each
0 ≤ i < |T | the operation corresponding to the i-th node in Γ matches the i-th task in T .
Initially, (I) holds because Γ = 〈(r0, 0, 0)〉 and T = 〈t0〉. Next, assume that (I) holds at some

1170

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

point during the procedure. If task t at the front of T is compound, then according to Def. 1,
case 2 we replace it with its subtasks. Due to (I), the frontmost node in Γ then corresponds
to a reduction matching t. Following the definition of the depth-first traversal, this node
in Γ is replaced with operations matching its subtasks in the correct order (Lemma 6). If
task t is primitive, then according to Def. 1, case 3 we remove it from T . Due to (I), the
frontmost node in Γ then corresponds to an action matching t and, as such, is a leaf in H,
hence it is removed from Γ. Both cases preserve (I).

Next, we observe that state s from above procedure is equivalent to state s from Lemma 7
because we begin with s := sI and alter s with the effects of each visited action.

Now we show that above procedure is well-defined and terminates. At iteration zero,
we have tasks T := 〈t0〉 and frontier Γ := 〈(r0, 0, 0)〉. By definition, r0 matches t0 and r0

has no preconditions; we can apply case 2 of Def. 1.

At the i-th iteration, we have state s, tasks T , and action sequence P. If T is not empty
yet, then we know due to (I) that operation o corresponding to the first node in Γ matches
the first task in T . Lemma 7 implies that pre(o) hold in s. Hence, if o is an action, we
can apply case 3 – we remove a from the front of P and apply eff(a) to s – and if o is a
reduction, we can apply case 2.

If T is empty, then (I) implies that Γ is empty and the traversal of H is finished. In
particular, all actions in π (each of which corresponds to a leaf node in H) have been visited,
so each of them has been removed from P. As a result, P = 〈〉 and case 1 applies.

To conclude, we have shown that we can recursively apply the definition for a classical
solution for Π to π using the sequence of visited operations in H. This proves that π is a
classical solution for Π and that criterium (3) of Def. 2 is satisfied for H, concluding the
proof that H is a valid hierarchical solution for Π.

Appendix B. Derivation of Complexity Results

We now derive the complexity results discussed in Chapter 5.5.

B.1 Number of Variables

With our instantiation and encoding approach, each operation at some position of some
layer may induce up to X · B new operations at the subsequent layer: At each of the X
child positions, up to B new children are possible. Initial layer L0 has size |L0| = 1 and
contains exactly Rl = 1 operation per position. Given layer Ll−1 of size |Ll−1| and with
Rl−1 operations at each position, the next layer Ll has a maximum size of |Ll| ≤ X · |Ll−1|
and up to Rl ≤ Rl−1 · B operations at each position. From these recurrent inequalities

we can deduce |Ll| ≤ X l and Rl ≤ Bl. For encoding Ll′ we have R :=
∑l′

l=0 |Ll| · Rl ≤∑l′

l=0X
l ·Bl = 1 +XB +X2B2 + . . .+X l′Bl′ ∈ O(X l′Bl′) operations in total.

Each operation with U free arguments induces up to U pseudo-constants and thus U ·C
new variables to represent their possible substitutions. We arrive at RUC ∈ O(X l′Bl′UC)
variables for pseudo-constant substitutions in total.

Let F be the number of relevant facts during the planning process. In the worst case
where we need to encode each fact at each position, we obtain a total of

∑l′

l=0 |Ll| · F ∈
O(X l′F) variables representing ground facts.

1171

Schreiber

At each position, each of the up to P preconditions (and E effects) of each operation
(action) may introduce a variable representing a pseudo-fact. We arrive at R · (P + E) ∈
O(X l′Bl′(P+E)) variables for pseudo-facts. For some action effects and for each dominated
operation, a variable denoting the equivalence of a pair of pseudo-constants may be encoded.
For an action of arity V the equality of O(V 2) pairs of pseudo-constants may be encoded
which leads to O(R · V 2) variables. When each encoded operation dominates some other
(unencoded) operation, an additional O(R · U) equality variables could be added.

For each position we add one variable representing the primitiveness of the position,
leading to O(X l′) additional variables. Finally, as explained in the next section, we intro-
duce log n helper variables whereever we encode at-most-constraints over n variables. This
results in O(X l′ logBl′) variables from Eq. 4 and in O(RU logC) variables from Eq. 11.

In total, the asymptotic number of encoded variables evaluates to

R+RUC +X l′F +R(P + E) +RV 2 +X l′ +X l′ logBl′ +RU logC

= X l′(Bl′(1 + UC + P + E + V 2 + U logC) + F + 1 + logBl′)

∈ O(X l′(F +Bl′(UC + P + E + V 2))). (30)

B.2 Number of Clauses

We traverse our encoding in the same order as presented in Chapter 5.1 and provide asymp-
totic complexity measures for the number of added clauses according to each rule.

Eq. 1 is a single unit clause. The introduction of new facts in Eq. 2 introduces each
fact once per layer, leading to O(l′F) unit clauses, while its optimized replacement Eq. 21
subsumes this measure. Eq. 3, the primitiveness of a position w.r.t. its active operation, is
added once for each operation, leading to O(R) clauses.

For at-most-one constraints over operations, Eq. 4 presents the naive method of adding
O(n2) binary clauses to restrict n variables. However, if n becomes sufficiently large we
employ a more sophisticated encoding where the number of possible variables is repre-
sented as an explicit binary number, each digit being represented by a new Boolean vari-
able (see Schreiber, 2018, Appendix A). This enables at-most-one constraints with O(log n)
helper variables and O(n log n) clauses. As a consequence, Eq. 4 asymptotically leads to
O(X l′(Bl′ logBl′)) = O(R logBl′) clauses, as Bl′ operations may occur at each position.

The preconditions and effects of operations in Eq. 5 and Eq. 6 make up for O(R(P +E))
clauses. The fact propagations introduced by Eq. 7 are purely virtual as explained earlier.

To define child and parent relationships, we add O(R) clauses from Eq. 8 and Eq. 9.

Eq. 10 leads to X l′ assumptions (which are not permanently added to the encoding).
The enforcement of at least one active substitution for each pseudo-constant as defined in
Eq. 12 leads to O(RU) clauses; one clause for each introduced pseudo-constant. Again
employing a binary at-most-one constraint scheme for substitutions instead of Eq. 11 we
obtain O(RU(C logC)) further clauses. Eq. 13 links each pseudo-fact to its respective
ground fact for each possible substitution combination. Overall O(R(P +E)) pseudo-facts
are encoded, one for each precondition and effect. In the worst case, up to F ground facts
may correspond to a single pseudo-fact and overall we need to add O(R(P +E)F) clauses.

Direct frame axioms, Eq. 14, induce up to two clauses for each fact at each position,
leading to O(X l′F) clauses. Indirect frame axioms in Eq. 15 need to be added for each

1172

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

fact f for each action that may indirectly support the change of f , so we may need to
instantiate the formula O(FR) times. The number of CNF clauses constructed for each
axiom is asymptotically equivalent to the number of nodes in the corresponding literal tree
(see Chapter 5.1.3). For every action effect there is at most one combination of substitutions
which unifies it with f . We also know that each substitution combination creates a new
path in the literal tree of depth Y (the maximum arity of a predicate) counted from the
end of the header literals. Hence, the tree can have up to E paths of depth Y which in the
worst case lead to EY nodes and a total of O(FREY) indirect frame axioms.

Clauses from Eq. 22 and Eq. 23 may be added for each precondition of each operation.
There can beO(F) possible substitution combinations for a given pseudo-fact. We can either
encode the invalid options (Eq. 23) leading to one clause for each invalid substitution or
encode the valid options (Eq. 22) which may induce O(Y) clauses for each valid substitution
if realized with a literal tree. In the worst case we have around F/2 valid substitutions and
F/2 invalid substitutions, in which case we add O(RPF) clauses in total.

Type restrictions for pseudo-constants – Eq. 16 or Eq. 17 – make up a constant number
of clauses for each pseudo-constant if we choose correctly, leading to O(RU) clauses.

To handle contradictory effects, in Eq. 18 we enumerate the possible substitution combi-
nations which unify two given effects of an action. In the worst case, each operator has E/2
negative effects which can each be unified with each of the remaining E/2 positive effects.
This leads to O(E) literal trees over combinations of substitution and equality variables,
similar to the ones introduced for indirect frame axioms (where pseudo-facts are unified with
a ground fact). Each tree can induce O(EY) clauses, so each operation induces O(E2 · Y)
clauses, leading to O(RE2Y) clauses overall.

The equality of pairs of pseudo-constants is encoded as in Eq. 19 in some cases. For up
to RV 2 variables, O(C) clauses are encoded, leading to O(RV 2C) clauses.

When each encoded operation dominates some other (unencoded) operation, Eq. 20
leads to O(R) clauses and up to RU equality variables inducing O(RUC) further clauses.

In total we arrive at an asymptotic number of

O
(
l′F +R+R logBl′ +R(P + E) +R+RU +RU(C logC) +R(P + E)F +X l′F

+ FREY +RPF +RU +RE2Y +RV 2C +RUC
)

= O
(
R
(
l′ logB + UC logC + (P + E)F + FEY + PF + E2Y + V 2C

)
+ FX l′

)
= O

(
R
(
l′ logB + C(U logC + V 2) + F (P + Y E) + Y E2

))
(31)

permanent clauses added to the encoding.

Appendix C. Supplementary Figures

We conclude with a number of supplementary illustrations and tables which provide some
more insight into our evaluations.

1173

Schreiber

#
in

st
a
n
ce

s
so

lv
ed

in
≤
t

se
co

n
d
s

0 5 10 15 20 25
0
4
8

12
16
20

Barman

0 40 80 120 160 200
0
4
8

12
16
20

Blocksworld

0 50 100 150 200 250
0
4
8

12
16
20

Childsnack

0 50 100 150 200 250
0
4
8

12
16
20

Depots

0 60 120 180 240 300
0
3
6
9

12
15

Elevator

0 8 16 24 32
0

3

6

9

12
Entertainment

0 6 12 18 24 30
0
4
8

12
16
20

Gripper

0 50 100 150 200 250
0
4
8

12
16
20

Hiking

0 60 120 180 240 300
0
4
8

12
16
20

Rover

0 40 80 120 160 200
0
3
6
9

12
15

Satellite

0 50 100 150 200 250
0
6

12
18
24
30

Transport

0 40 80 120 160 200
0
4
8

12
16
20

Zenotravel

Run time t / s

#
so

lv
ed

in
st

a
n
ce

s
w

it
h
|π
|≤

x

0 40 80 120 160 200
0
4
8

12
16
20

Barman

0 80 160 240 320
0
4
8

12
16
20

Blocksworld

0 25 50 75 100
0
4
8

12
16
20

Childsnack

0 20 40 60 80 100
0
4
8

12
16
20

Depots

0 15 30 45 60 75
0
3
6
9

12
15

Elevator

0 3 6 9 12 15
0

3

6

9

12
Entertainment

0 25 50 75 100 125
0
4
8

12
16
20

Gripper

0 20 40 60 80 100
0
4
8

12
16
20

Hiking

0 150 300 450 600
0
4
8

12
16
20

Rover

0 100 200 300 400 500
0
3
6
9

12

Satellite

0 50 100 150 200 250
0
6

12
18
24
30

Transport

0 50 100 150 200
0
4
8

12
16
20

Zenotravel

Plan length x

#
in

st
a
n
ce

s
so

lv
ed

w
it

h
≤
x

cl
a
u
se

s

0 1 2
0
4
8

12
16
20

Barman

0 4 8 12 16
0
4
8

12
16
20

Blocksworld

0 1 2 3 4 5
0
4
8

12
16
20

Childsnack

0 4 8 12 16 20
0
4
8

12
16
20

Depots

0 3 6 9 12 15
0
3
6
9

12
15

Elevator

0 2 4 6
0

3

6

9

12
Entertainment

0.00 0.08 0.16 0.24 0.32 0.40
0
4
8

12
16
20

Gripper

0 3 6 9 12 15
0
4
8

12
16
20

Hiking

0 5 10 15 20 25
0
4
8

12
16
20

Rover

0 3 6 9 12
0
3
6
9

12

Satellite

0 3 6 9 12
0
6

12
18
24
30

Transport

0 5 10 15 20 25
0
4
8

12
16
20

Zenotravel

Number of clauses x / 106

Lilotane LilotaneQ Tree-REX PANDA-totSAT PANDA-SAT PANDA-SAT-OPT

Figure 16: Per-domain properties of SAT-based planners (plan lengths without Tree-REX).

1174

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

#
in

st
a
n
ce

s
so

lv
ed

in
≤
t

se
co

n
d
s

0 250 500 750 1000 1250
0

1

2

3

4

5

AssemblyHierarchical

0 150 300 450 600 750
0

4

8

12

16

20

Barman-BDI

0 250 500 750 1000 1250
0

5

10

15

20

Blocksworld-GTOHP

0 50 100 150 200 250
0

6

12

18

24

30

Blocksworld-HPDDL

0 200 400 600 800
0

6

12

18

24

30

Childsnack

0 250 500 750 1000
0

5

10

15

20

25
Depots

0 400 800 1200 1600
0

30

60

90

120

150
Elevator-Learned

0 300 600 900 1200 1500
0

1

2

3

4

Entertainment

0 250 500 750 1000 1250
0

1

2

3

4

Factories-simple

0 250 500 750 1000 1250
0

3

6

9

12

Freecell-Learned

0 80 160 240 320
0

5

10

15

20

25

Hiking

0 400 800 1200 1600
0

8

16

24

32

40

Logistics-Learned

0 80 160 240 320 400
0

1

2

3

4

5

Minecraft-Player

0 400 800 1200 1600
0

10

20

30

40

50

Minecraft-Regular

0 10 20 30 40 50
0

4

8

12

16

20

Monroe-Fully-Observable

0 30 60 90 120 150
0

4

8

12

16

20

Monroe-Partially-Observable

0 200 400 600 800 1000
0

2

4

6

8

Multiarm-Blocksworld

0 8 16 24 32
0

4

8

12

16

20

Robot

0 300 600 900 1200 1500
0

6

12

18

24

30

Rover-GTOHP

0 300 600 900 1200 1500
0

4

8

12

16

20

Satellite-GTOHP

0 50 100 150 200
0

4

8

12

16

20

Snake

0 80 160 240 320 400
0

3

6

9

12

Towers

0 300 600 900 1200 1500
0

8

16

24

32

40

Transport

0 2 4 6 8 10
0

6

12

18

24

30

Woodworking

Run time t / s

Lilotane HyperTensioN Prelilotane LilotaneQ LilotaneQ+

Figure 17: Per-domain run times in the IPC followup evaluations.

1175

Schreiber

#
so

lv
ed

in
st

a
n
ce

s
w

it
h
|π
|≤

x

0 3 6 9 12
0

1

2

3

4

5

AssemblyHierarchical

0 250 500 750 1000 1250
0

4

8

12

16

20

Barman-BDI

0 150 300 450 600
0

5

10

15

20

Blocksworld-GTOHP

0 1500 3000 4500 6000
0

6

12

18

24

30

Blocksworld-HPDDL

0 500 1000 1500 2000 2500
0

6

12

18

24

30

Childsnack

0 80 160 240 320 400
0

5

10

15

20

25
Depots

0 400 800 1200 1600 2000
0

30

60

90

120

150
Elevator-Learned

0 10 20 30 40 50
0

1

2

3

4

Entertainment

0 50 100 150 200 250
0

1

2

3

4

Factories-simple

0 50 100 150 200
0

3

6

9

12

Freecell-Learned

0 40 80 120 160
0

5

10

15

20

25

Hiking

0 150 300 450 600
0

8

16

24

32

40

Logistics-Learned

0 50 100 150 200 250
0

1

2

3

4

5

Minecraft-Player

0 1500 3000 4500 6000 7500
0

10

20

30

40

50

Minecraft-Regular

0 15 30 45 60
0

4

8

12

16

20

Monroe-Fully-Observable

0 15 30 45 60 75
0

4

8

12

16

20

Monroe-Partially-Observable

0 15 30 45 60 75
0

2

4

6

8

Multiarm-Blocksworld

0 400 800 1200 1600
0

4

8

12

16

20

Robot

0 500 1000 1500 2000 2500
0

6

12

18

24

30

Rover-GTOHP

0 300 600 900 1200 1500
0

4

8

12

16

20

Satellite-GTOHP

0 30 60 90 120 150
0

4

8

12

16

20

Snake

0 800 1600 2400 3200 4000
0

3

6

9

12

Towers

0 1000 2000 3000 4000 5000
0

8

16

24

32

40

Transport

0 40 80 120 160 200
0

6

12

18

24

30

Woodworking

Plan length x

Lilotane HyperTensioN Prelilotane LilotaneQ LilotaneQ+

Figure 18: Per-domain plan lengths in the IPC followup evaluations.

1176

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

Figure 19: Distribution of occurrences of different clause categories encoded by LilotaneQ
on the IPC benchmarks, overall (leftmost column) and per domain. All instances for which
LilotaneQ found some initial plan were considered.

Figure 20: Partition of run times by stage for three SAT-based planners on an old set of
benchmarks (see Fig. 14) and, additionally, for Lilotane on the IPC benchmarks.

1177

Schreiber

Domain slv. pos. lay. cls./106 act.
pos.

red.
pos.

psc.
pos.

ret.pr. pruned dom. +prec.

AssemblyH. 5 136.00 14.00 0.43 9.75 1.54 1.94 50.60 50.60 71.80 76.00
Barman 17 702.53 6.00 0.14 2.15 0.54 0.59 0.00 0.00 0.00 2.00
Blocksworld-G. 23 8215.70 10.39 0.66 2.22 0.07 0.05 7.48 80.61 26.00 6.00
Blocksworld-H. 1 10929.00 13.00 3.34 3.99 3.25 1.25 0.00 0.00 3.00 11.00
Childsnack 29 284.38 2.00 1.67 0.83 0.17 0.66 0.00 0.00 0.00 8.00
Depots 24 1696.58 6.00 1.48 2.59 0.24 0.42 0.96 7.12 25.67 11.00
Elevator 147 3547.09 8.99 1.05 2.23 0.61 0.25 0.01 0.01 0.00 7.00
Entertainment 4 510.75 7.25 20.31 3.26 2.00 0.95 0.00 0.00 282.00 64.00
Factories 4 4747.75 12.75 0.51 2.01 0.94 0.79 0.00 0.00 21.25 0.00
Freecell 12 3147.08 9.33 13.85 8.85 11.00 3.12 3.75 3.75 3653.75 642.00
Hiking 23 10578.04 12.48 0.78 1.53 0.15 0.32 18.57 3873.09 0.00 7.00
Logistics 45 3483.71 11.91 1.99 4.65 1.29 0.73 0.00 0.00 0.00 41.07
Minecraft-P. 2 777.50 8.50 5.05 4.98 3.07 1.50 19.50 47.50 0.50 5.00
Minecraft-R. 35 10699.46 12.60 1.22 4.25 0.69 0.00 94.46 630.17 0.00 2.00
Monroe-FO. 20 1153.95 7.85 0.84 3.14 0.67 0.60 6.55 28.15 86.45 112.75
Monroe-PO. 20 1811.55 8.00 1.32 3.22 0.64 0.58 4.35 15.95 134.45 89.80
Multiarm-Bl. 4 22465.75 14.50 5.26 4.16 1.90 0.88 0.00 0.00 7.25 11.00
Robot 11 186.73 15.00 0.01 4.25 0.55 0.45 2.91 3.09 0.00 13.00
Rover 23 826.22 4.57 1.44 2.07 0.23 0.30 0.04 0.04 0.00 43.43
Satellite 16 1562.56 7.00 3.12 1.95 0.43 0.31 0.00 0.00 0.00 7.00
Snake 20 244.20 8.55 1.00 2.44 0.56 0.59 0.00 0.00 0.00 7.00
Towers 9 19601.33 119.56 0.30 2.47 0.01 0.02 0.00 0.00 0.00 4.00
Transport 33 393.64 4.64 0.27 2.46 0.29 0.60 0.24 0.24 14.94 13.00
Woodworking 30 249.47 4.63 0.09 1.53 0.56 1.60 4.97 5.10 0.57 126.77

Table 6: Statistics overview of all IPC instances solved by Lilotane. From left to right:
Solved instances; created positions / layers / clauses; actions / reductions / pseudo-
constants per position; retroactive prunings, operations pruned by these prunings, dom-
inated operations, inferred preconditions. All but the three “per position” measures are
arithmetic averages over all solved instances in the domain. Measures for operations and
pseudo-constants per position also include the objects which are later removed again due
to retroactive prunings or dominated operations.

References

Alford, R., Bercher, P., & Aha, D. (2015). Tight bounds for HTN planning. In Proceedings
of the Twenty-Fifth International Conference on Automated Planning and Scheduling,
Vol. 1, pp. 7–15.

Ankerl, M. (2020). robin hood unordered map & set. https://github.com/martinus/

robin-hood-hashing. Accessed: 2020-09-25.

Audemard, G., & Simon, L. (2009). Predicting learnt clauses quality in modern SAT solvers.
In Twenty-first International Joint Conference on Artificial Intelligence, pp. 399–404.

Balyo, T., Biere, A., Iser, M., & Sinz, C. (2016). SAT race 2015. Artificial Intelligence, 241,
45–65.

Behnke, G., Bercher, P., & Höller, D. (2020a). Plan verification. http://gki.informatik.
uni-freiburg.de/ipc2020/format.pdf. Accessed: 2020-09-24.

1178

https://github.com/martinus/robin-hood-hashing
https://github.com/martinus/robin-hood-hashing
http://gki.informatik.uni-freiburg.de/ipc2020/format.pdf
http://gki.informatik.uni-freiburg.de/ipc2020/format.pdf

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

Behnke, G., Bercher, P., & Höller, D. (2020b). Proceedings of the 2020 International Plan-
ning Competition (IPC). To be published.

Behnke, G., Höller, D., & Biundo, S. (2018). totSAT – totally-ordered hierarchical plan-
ning through SAT. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 32, pp. 6110–6118.

Behnke, G., Höller, D., & Biundo, S. (2019a). Bringing order to chaos – a compact repre-
sentation of partial order in SAT-based HTN planning. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33, pp. 7520–7529.

Behnke, G., Höller, D., & Biundo, S. (2019b). Finding optimal solutions in HTN planning
– a SAT-based approach. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, pp. 5500–5508.

Behnke, G., Höller, D., Schmid, A., Bercher, P., & Biundo, S. (2020). On succinct groundings
of HTN planning problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34, pp. 9775–9784.

Bercher, P., Alford, R., & Höller, D. (2019). A survey on hierarchical planning – one abstract
idea, many concrete realizations. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, pp. 6267–6275.

Blaylock, N., & Allen, J. (2005). Generating artificial corpora for plan recognition. In
International Conference on User Modeling, pp. 179–188. Springer.

Bonet, B., & Geffner, H. (2020). Learning first-order symbolic representations for planning
from the structure of the state space. In European Conference on Artificial Intelli-
gence. IOS Press.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69 (1-2), 165–204.

Cashmore, M., Fox, M., & Giunchiglia, E. (2013). Partially grounded planning as quantified
boolean formula. In Proceedings of the Twenty-Third International Conference on
Automated Planning and Scheduling, pp. 29–36.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM symposium on Theory of computing, pp. 151–158.

Corrêa, A. B., Pommerening, F., Helmert, M., & Frances, G. (2020). Lifted successor genera-
tion using query optimization techniques. In Proceedings of the Thirtieth International
Conference on Automated Planning and Scheduling, pp. 80–89.

Ernst, M. D., Millstein, T. D., & Weld, D. S. (1997). Automatic sat-compilation of planning
problems. In IJCAI, Vol. 97, pp. 1169–1176.

Erol, K., Hendler, J., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, pp. 1123–
1128.

Erol, K., Hendler, J., & Nau, D. S. (1996). Complexity results for htn planning. Annals of
Mathematics and Artificial Intelligence, 18 (1), 69–93.

1179

Schreiber

Geier, T., & Bercher, P. (2011). On the decidability of HTN planning with task insertion.
In Proceedings of the Twenty-Second International Joint Conference on Artificial In-
telligence, pp. 1955–1961.

Georgievski, I., & Aiello, M. (2015). HTN planning: Overview, comparison, and beyond.
Artificial Intelligence, 222, 124–156.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: theory and practice.
Elsevier.

Gocht, S., & Balyo, T. (2017). Accelerating SAT based planning with incremental SAT
solving. In Proceedings of the Twenty-Seventh International Conference on Automated
Planning and Scheduling, pp. 135–139.

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks. Arti-
ficial Intelligence, 173 (5-6), 503–535.

Höller, D., Behnke, G., Bercher, P., & Biundo, S. (2018). Plan and goal recognition as HTN
planning. In 30th International Conference on Tools with Artificial Intelligence, pp.
466–473.

Höller, D., Behnke, G., Bercher, P., Biundo, S., Fiorino, H., Pellier, D., & Alford, R. (2020).
HDDL: An extension to PDDL for expressing hierarchical planning problems. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, pp. 9883–9891.

Kautz, H., & Selman, B. (1998). BLACKBOX: A new approach to the application of the-
orem proving to problem solving. In AIPS98 workshop on planning as combinatorial
search, pp. 58–60.

Kautz, H., Selman, B., & Hoffmann, J. (2006). SatPlan: Planning as satisfiability. In 5th
international planning competition, p. 156.

Kautz, H. A., Selman, B., et al. (1992). Planning as satisfiability. In European Conference
on Artificial Intelligence, Vol. 92, pp. 359–363. Citeseer.

Magnaguagno, M., Meneguzzi, F., & de Silva, L. (2020). HyperTensioN – a three-stage
compiler for planning. In Proceedings of the 2020 International Planning Competition
(IPC). To appear.

Mali, A. D., & Kambhampati, S. (1998). Encoding HTN planning in propositional logic.
In Artificial Intelligence Planning Systems, pp. 190–198.

Nadel, A., & Ryvchin, V. (2012). Efficient SAT solving under assumptions. In International
Conference on Theory and Applications of Satisfiability Testing, pp. 242–255. Springer.

Nau, D., Cao, Y., Lotem, A., & Munoz-Avila, H. (1999). SHOP: Simple hierarchical or-
dered planner. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence, Vol. 2, pp. 968–973.

Ramoul, A., Pellier, D., Fiorino, H., & Pesty, S. (2017). Grounding of HTN planning domain.
International Journal on Artificial Intelligence Tools, 26 (05), 1760021.

Reiter, R. (1981). On closed world data bases. In Readings in artificial intelligence, pp.
119–140. Elsevier.

1180

Lilotane: A Lifted SAT-Based Approach to Hierarchical Planning

Rintanen, J. (2004). Evaluation strategies for planning as satisfiability. In European Con-
ference on Artificial Intelligence, Vol. 16, p. 682.

Rintanen, J. (2014). Madagascar: Scalable planning with SAT. In Proceedings of the 8th
International Planning Competition (IPC-2014).

Robinson, N., Gretton, C., Pham, D. N., & Sattar, A. (2009). SAT-based parallel planning
using a split representation of actions. In Proceedings of the Nineteenth International
Conference on Automated Planning and Scheduling, pp. 281–288.

Schreiber, D. (2018). Hierarchical task network planning using SAT techniques. Master’s
thesis, Grenoble Institut National Polytechnique, Karlsruhe Institute of Technology.

Schreiber, D., Pellier, D., Fiorino, H., & Balyo, T. (2019a). Efficient SAT encodings for
hierarchical planning. In Proceedings of the 11th International Conference on Agents
and Artificial Intelligence, Vol. 2, pp. 531–538.

Schreiber, D., Pellier, D., Fiorino, H., et al. (2019b). Tree-REX: SAT-based tree exploration
for efficient and high-quality HTN planning. In Proceedings of the Twenty-Ninth
International Conference on Automated Planning and Scheduling, pp. 382–390.

Sönnichsen, M., & Schreiber, D. (2020). The “Factories” HTN domain. In Proceedings of
the 2020 International Planning Competition (IPC). To appear.

Soos, M., Nohl, K., & Castelluccia, C. (2009). Extending SAT solvers to cryptographic
problems. In Theory and Applications of Satisfiability Testing - SAT 2009, pp. 244–
257. Springer.

Streeter, M. J., & Smith, S. F. (2007). Using decision procedures efficiently for optimization.
In Proceedings of the Seventeenth International Conference on Automated Planning
and Scheduling, pp. 312–319.

Weld, D. S. (1994). An introduction to least commitment planning. AI magazine, 15, 27–61.

Wichlacz, J., Torralba, A., & Hoffmann, J. (2019). Construction-planning models in
minecraft. In Proceedings of the 2nd ICAPS Workshop on Hierarchical Planning.

Williams, M. (2020). Partially instantiated representations for automated planning. Mas-
ter’s thesis, Karlsruhe Institute of Technology.

1181

	Introduction
	Preliminaries
	TOHTN Planning
	HTN Structures
	Problem Definition
	Input Definition
	Example

	SAT Solving
	Related Work
	Grounding
	SAT-Based HTN Planning
	Lifted SAT Encodings for Automated Planning

	Planning Approach
	Instantiation
	Example
	Transformation of Reductions into Actions
	Pseudo-Constants

	Reachability Analysis for Facts and Operations
	Computation
	Correctness
	Relevant Facts and Retroactive Pruning

	Precondition Inference
	Shared Pseudo-Constants and Dominated Operations

	Encoding
	Base Encoding
	Basic Constraints
	Pseudo-Constants and Pseudo-Facts
	Literal Trees for Sets of Substitutions
	Argument Type Restrictions
	Actions with Contradictory Effects
	Dominated Operations

	Optimizations
	Accounting for Invariant Facts
	Reduction of Encoded Variables and Clauses

	Decoding a Plan
	Correctness
	Complexity

	Plan Improvement
	Previous Approaches
	Our Approach
	Finding Globally Optimal Plans

	Evaluation
	Implementation
	Lilotane as a SAT-Based HTN Planner
	Overview
	Encoding Properties
	Resource Usage

	International Planning Competition 2020
	Benchmarks
	Rules and Participants
	Results

	Follow-Up Evaluation
	Overview
	Plan Quality

	Discussion

	Conclusion
	Outlook

	Proof of Correctness
	Derivation of Complexity Results
	Number of Variables
	Number of Clauses
	Supplementary Figures
	References

