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Abstract. In this work, we address an online job scheduling problem in
a large distributed computing environment. Each job has a priority and a
demand of resources, takes an unknown amount of time, and is malleable,
i.e., the number of allotted workers can fluctuate during its execution. We
subdivide the problem into (a) determining a fair amount of resources for
each job and (b) assigning each job to an according number of processing
elements. Our approach is fully decentralized, uses lightweight commu-
nication, and arranges each job as a binary tree of workers which can
grow and shrink as necessary. Using the NP-complete problem of propo-
sitional satisfiability (SAT) as a case study, we experimentally show on
up to 128 machines (6144 cores) that our approach leads to near-optimal
utilization, imposes minimal computational overhead, and performs fair
scheduling of incoming jobs within a few milliseconds.
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1 Introduction

A parallel task is called malleable if it can handle a fluctuating number of work-
ers during its execution. In the field of distributed computing, malleability has
long been recognized as a powerful paradigm which opens up vast possibilities
for fair and flexible scheduling and load balancing [13, 17]. While most previous
research on malleable job scheduling has steered towards iterative data-driven
applications, we want to shed light on malleability in a very different context,
namely for NP-hard tasks with unknown processing times. For instance, the
problem of propositional satisfiability (SAT) is of high practical relevance and
an important building block for many applications including automated plan-
ning [26], formal verification [18], and cryptography [20]. We consider malleable
scheduling of such tasks highly promising: On the one hand, the description
of a job can be relatively small even for very difficult problems, and the suc-
cessful approach of employing many combinatorial search strategies in parallel
can be made malleable without redistribution of data [27]. On the other hand,
the limited scalability of these parallel algorithms calls for careful distribution
of computational resources. We believe that a cloud-like on-demand system for
resolving NP-hard problems has the potential to drastically improve efficiency
and productivity for many organizations and environments. Using malleable job
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scheduling, we can schedule new jobs within a few milliseconds, resolve trivial
jobs in a fraction of second, and rapidly resize more difficult jobs to a fair share
of all resources – as far as the job can make efficient use of these resources.

To meet these objectives, we propose a fully decentralized scheduling ap-
proach which guarantees fast, fair, and bottleneck-free scheduling of resources
without any knowledge on processing times. In previous work [27], we briefly
outlined initial algorithms for this purpose while focusing on our award-winning
scalable SAT solving engine which we embedded into our system. In this work,
we shed more light on our earlier scheduling algorithms and proceed to propose
significant improvements both in theory and in practice.

We address two subproblems. The first problem is to let m workers compute
a fair number of workers vj for each active job j, accounting for its priority and
maximum demand, which result in optimal system utilization. In previous work
[27] we outlined this problem and employed a black box algorithm to solve it. The
second problem is to assign vj workers to each job j while keeping the assignment
as stable as possible over time. Previously [27], we proposed to arrange each job
j as a binary tree of workers which grows and shrinks depending on vj , and we
described and implemented a worker assignment strategy which routes request
messages randomly through the system. When aiming for optimal utilization,
this protocol leads to high worst-case scheduling latencies.

In this work, we describe fully distributed and bottleneck-free algorithms
for both of the above problems. Our algorithms have O(logm) span and are
designed to consistently achieve optimal utilization. Furthermore, we introduce
new measures to preferably reuse existing (suspended) workers for a certain job
rather than initializing new workers. We then present our scheduling platform
Mallob1 which features simplified yet highly practical implementations of our
approaches. Experiments on up to 128 nodes (6144 cores) show that our system
leads to near-optimal utilization and schedules jobs with a fair share of resources
within tens of milliseconds. We consider our theoretical as well as practical results
to be promising contributions towards processing malleable NP-hard tasks in a
more scalable and resource-efficient manner.

2 Preliminaries

We now establish important preliminaries and discuss work related to ours.

2.1 Malleable Job Scheduling

We use the following definitions [10]: A rigid task requires a fixed number of
workers. A moldable task can be scaled to a number of workers at the time of
its scheduling but then remains rigid. Finally, a malleable task is able to adapt
to a fluctuating number of workers during its execution. Malleability can be a
highly desirable property of tasks because it allows to balance tasks continuously

1 https://github.com/domschrei/mallob
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to warrant fair and optimal utilization of the system at hand [17]. For instance,
if an easy job arrives in a fully utilized system, malleable scheduling allows to
shrink an active job in order to schedule the new job immediately, significantly
decreasing its response time. Due to the appeal of malleable job scheduling, there
has been ongoing research to exploit malleability, from shared-memory systems
[13] to HPC environments [6, 9], even to improve energy efficiency [25].

The effort required to transform a moldable (or rigid) algorithm into a mal-
leable algorithm depends on the application at hand. For iterative data-driven
applications, redistribution of data is necessary if a task is expanded or shrunk
[9]. In contrast, we demonstrated in previous work [27] for the use case of proposi-
tional satisfiability (SAT) that basic malleability is simple to achieve if the paral-
lel algorithm is composed of many independent search strategies: The abrupt sus-
pension and/or termination of individual workers can imply the loss of progress,
but preserves completeness. Moreover, if workers periodically exchange knowl-
edge, the progress made on a worker can benefit the job even if the worker is
removed. For these reasons, we have not yet considered the full migration of
application processes as is done in adaptive middlewares [9, 16] but instead hold
the application itself responsible to react to workers being added or removed.

Most prior approaches rely on known processing times of jobs and on an
accurate model for their execution time relative to the degree of parallelism [5,
24] whereas we do not rely on such knowledge. Furthermore, most approaches
employ a centralized scheduler, which implies a potential bottleneck and a single
point of failure. Our approach is fully decentralized and uses a small part of each
processes’ CPU time to perform distributed scheduling, which also opens up the
possibility to add more general fault-tolerance to our work in the future. For in-
stance, this may include continuing to schedule and process jobs correctly even
in case of network-partitioning faults [2], i.e., failures where sub-networks in the
distributed environment are disconnected from each another. Other important
aspects of fault-tolerance include mitigation of simple node failures (i.e., a ma-
chine suddenly goes out of service) and of Byzantine failures [7] (i.e., a machine
exhibits arbitrary behavior, potentially due to a malicious attack).

2.2 Scalable SAT Solving

The propositional satisfiability (SAT) problem poses the question whether a
given propositional formula F =

∧k
i=1

(∨ci
j=1 li,j

)
is satisfiable, i.e., whether

there is an assignment to all Boolean variables in F such that F evaluates to
true. SAT is the archetypical NP-complete problem [8] and, as such, a noto-
riously difficult problem to solve. SAT solving is a crucial building block for
a plethora of applications such as automated planning [26], formal verification
[18], and cryptography [20]. State-of-the-art SAT solvers are highly optimized:
The most popular algorithm named Conflict-Driven Clause Learning (CDCL)
performs depth-first search on the space of possible assignments, backtracks and
restarts its search frequently, and derives redundant conflict clauses when en-
countering a dead end in its search [19]. As these clauses prune search space
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and can help to derive unsatisfiability, remembering important derived clauses
is crucial for modern SAT solvers’ performance [3].

The empirically best performing approach to parallel SAT solving is a so-
called portfolio of different solver configurations [14] which all work on the origi-
nal problem and periodically exchange learned clauses. In previous work, we pre-
sented a highly competitive portfolio solver with clause sharing [27] and demon-
strated that careful periodic clause sharing can lead to respectable speedups for
thousands of cores. The malleable environment of this solver is the system which
we present here. Other recent works on decentralized SAT solving [15, 21] rely on
a different parallelization which generates many independent subproblems and
tends to be outperformed by parallel portfolios for most practical inputs [11].

2.3 Problem Statement

We consider a homogeneous computing environment with a number of intercon-
nected machines on which a total of m processing elements, or PEs in short, are
distributed. Each PE has a rank x ∈ {0, . . . ,m − 1} and runs exclusively on
c ≥ 1 cores of its local machine. PEs can only communicate via message passing.

Jobs are introduced over an interface connecting to some of the PEs. Each
job j has a job description, a priority pj ∈ R+, a demand dj ∈ N+, and a budget
bj (in terms of wallclock time or CPU time). If a PE participates in processing a
job j, it runs an execution environment of j named a worker. A job’s demand dj
indicates the maximum number of parallel workers it can currently employ: dj
is initialized to 1 and can then be adjusted by the job after an initial worker has
been scheduled. A job’s priority pj may be set, e.g., depending on who submitted
j and on how important they deem j relative to an average job of theirs. In a
simple setting where all jobs are equally important, assume pj = 1 ∀j. A job
is cancelled if it spends its budget bj before finishing. We assume for the active
jobs J in the system that the number n = |J | of active jobs is no higher than
m and that each PE employs at most one worker at any given time. However,
a PE can preempt its current worker, run a worker of another job, and possibly
resume the former worker at a later point.

Let Tj be the set of active workers of j ∈ J . We call vj := |Tj | the volume of
j. Our aim is to continuously assign each j ∈ J to a set Tj of PEs subject to:

(C1) (Optimal utilization) Either all job demands are fully met or all m PEs are
working on a job: (∀j ∈ J : vj = dj) ∨

∑
j∈J vj = m.

(C2) (Individual job constraints) Each job must have at least one worker and is
limited to dj workers: ∀j ∈ J : 1 ≤ vj ≤ dj .

(C3) (Fairness) Resources allotted to each job j scale proportionally with pj except
if prevented by C2:
For each j, j′ ∈ J with pj ≥ pj′ , there are fair assignments ω, ω′ ∈ R+ with
ω/ω′ = pj/pj′ and some 0 ≤ ε ≤ 1 such that vj = min(dj ,max(1, bω + εc))
and vj′ = min(dj′ ,max(1, bω′c)).

Due to rounding, in C3 we allow for job volumes to deviate by a single unit (see
ε ≤ 1) from a fair distribution as long as the job of higher priority is favored.
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3 Approach

We subdivide the problem at hand into two subproblems: First, find fair volumes
vj for all currently active jobs j ∈ J subject to C1–C3. Secondly, identify pairwise
disjoint sets Tj with |Tj | = vj for each j ∈ J . In this section, we present fully
decentralized and highly scalable algorithms for both subproblems. In Section 4.1
we describe how our practical implementation differs from these algorithms.

To assess our algorithms, we consider two important measures from parallel
processing. Given a distributed algorithm, consider the dependency graph which
is induced by the necessary communication among all PEs. The span (or depth)
of the algorithm is the length of a critical path through this graph. The local
work is the complexity of local computations summed up over all PEs.

3.1 Calculation of Fair Volumes

Given jobs J with individual priorities and demands, we want to find a fair
volume vj for each job j such that constraints C1–C3 are met. Volumes are re-
computed periodically taking into account new jobs, departing jobs, and changed
demands. In the following, assume that each job has a single worker which repre-
sents this (and only this) job. We elaborate on these representants in Section 3.2.

We defined our problem such that n = |J | ≤ m. Similarly, we assume∑
j∈J dj > m since otherwise we can trivially set vj = dj for all jobs j. Assuming

real-valued job volumes for now, we can observe that for any parameter α ≥ 0,
constraints C2–C3 are fulfilled if we set vj = vj(α) := max(1,min(dj , αpj)). By
appropriately choosing α, we can also meet the utilization constraint C1: Con-
sider the function ξ(α) := m−∑j∈J vj(α) which expresses the unused resources
for a particular value of α. Function ξ is a continuous, monotonically decreasing,
and piece-wise linear function (see Fig. 1). Moreover, ξ(0) = m − n ≥ 0 and
ξ(maxj∈J dj/pj) = m −∑j∈J dj < 0. Hence ξ(α) = 0 has a solution α0 which
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Fig. 1. Volume calculation example with four jobs and m = 7. Five of the eight points
where ξ(α) is evaluated are depicted, three more (d3/p3, d1/p1, and d2/p2) are omitted.
In the interval [1/p2, 1/p1] we find α0 = 0.8 (red circle) where ξ(α) = 0. Job 4 is capped
at its demand (v4 = 2) and job 1 is raised to v1 = 1. The real-valued shares α0p2 = 1.6
and α0p3 = 2.4 are rounded to v2 = 1 and v3 = 3 as job 3 has the higher priority.
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represents the desired choice of α that exploits all resources, i.e., it also fulfills
constraint C1. Once α0 is found, we need to round each vj(α0) to an integer.
Due to C1 and C3, we propose to round down all volumes and then increment
the volume of the k := m −∑jbvj(α0)c jobs of highest priority: We identify
J ′ := {j ∈ J : vj(α0) < dj}, sort J ′ by job priority, and select the first k jobs.

We now outline a fully distributed algorithm which finds α0 in logarithmic
span. We exploit that ξ′, the gradient of ξ, changes at no more than 2n values of
α, namely when αpj = 1 or αpj = dj for some j ∈ J . Since we have m ≥ n PEs
available, we can try these O(n) values of ξ(α) in parallel. We then find the two
points with smallest positive value and largest negative value using a parallel
reduction operation. Lastly, we interpolate ξ between these points to find α0.

The parallel evaluation of ξ is still nontrivial since a naive implementation
would incur quadratic work – O(n) for each value of α. We now explain how to
accelerate the evaluation of ξ. For this, we rewrite ξ(α) = m−∑j∈J vj(α) as:

ξ(α) = m −
( ∑

j :αpj<1

1 +
∑
j :αpj>dj

dj︸ ︷︷ ︸
R

)
− α

∑
j : 1≤αpj≤dj

pj︸ ︷︷ ︸
P

(1)

Intuitively, R sums up all resources which are assigned due to raising a job
volume to 1 (if αpj < 1) and due to capping a job volume at dj (if αpj > dj);
and αP sums up all resources assigned as vj = αpj (if 1 ≤ αpj ≤ dj).

This new representation only features two unknown variables,R and P , which
can be computed efficiently. At α = 0, we have R = n and P = 0 since all job
volumes are raised to one. If we then successively increase α, we pass 2n events
where R and P are modified, namely whenever αpj = 1 or αpj = dj for some
job j. Since each such event modifies R and P by a fixed amount, we can use a
single prefix sum calculation to obtain all intermediate values of R and P .

Each event e = (αe, re, pe) occurs at point αe and adds re to R and pe to P .
Each job j causes two events: ej = (1/pj ,−1, pj) for the point αpj = 1 where vj
stops being raised to 1, and ej = (dj/pj , dj ,−pj) for the point αpj = dj where vj
begins to be capped at dj . We sort all events by αe and then compute a prefix sum
over re and pe: (Re, Pe) = (

∑
e′�e re′ ,

∑
e′�e rp′), where “≺” denotes the ordering

of events after sorting. We can now compute ξ(αe) = m − (n + Re) − αePe at
each event e.2 The value of n can be obtained with a parallel reduction.

Overall, our algorithm hasO(logm) span and takesO(m logm) work: Sorting
O(n) elements in parallel on m ≥ n PEs is possible in logarithmic time,3 as is
computing reductions and prefix sums. Selecting the k jobs to receive additional
volume after rounding down all volumes can be reduced to sorting as well.

2 If there are multiple events at the same α, their prefix sum results can differ but will
still result in the same ξ(α). This is due to the continuous nature of ξ: Note how
each event modifies the gradient ξ′(α) but preserves the value of ξ(α).

3 Asymptotically optimal sorting on communication networks [1] is of mostly theoreti-
cal value due to the large constant values involved. However there are quite practical
algorithms when n ∈ O(

√
m) or when spending O(log2 n) time is acceptable [4].
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Fig. 2. Left: Job tree Tj features ten workers {w0
j , w

1
j , . . . , w

9
j} due to the volume

vj = 10 assigned to j. Right: Volume update vj = 4 arrives. Consequently, all workers
with index ≥ 4 are suspended and the corresponding PEs can adopt another job.

3.2 Assignment of Jobs to PEs

We now describe how the fair volumes computed as in the previous section
translate to an actual assignment of jobs to PEs.

Basic Approach. We begin with our basic approach as introduced in [27].
For each job j, we address the k current workers in Tj as w0

j , w
1
j , . . . , w

k−1
j .

These workers can be scattered throughout the system, i.e., their job indices
0, . . . , k − 1 within Tj are not to be confused with their ranks. The k workers
form a communication structure in the shape of a binary tree (Fig. 2). Worker
w0
j is the root of this tree and represents j for the calculation of its volume

(Section 3.1). Workers w2i+1
j and w2i+2

j are the left and right children of wij .
Jobs are made malleable by letting Tj grow and shrink dynamically. Specifically,
we enforce that Tj consists of exactly k = vj workers. If vj is updated, all workers
wij for which i ≥ vj are suspended and the corresponding PEs turn idle. Likewise,
workers without a left (right) child for which 2i+1 < vj (2i+2 < vj) attempt to
find a child worker w2i+1

j (w2i+2
j ). New workers are found via request messages:

A request message r = (j, i, x) holds index i of the requested worker wij as well
as rank x of the requesting worker. If a new job is introduced at some PE, then
this PE emits a request for the root node w0

j of Tj . All requests for wij , i > 0
are emitted by the designated parent node wb(i−1)/2c

j of the desired worker.
In [27], we proposed that each request performs a random walk through a

regular graph of all PEs and is resolved as soon as it hits an idle PE. While
this strategy resolves most requests quickly, some requests can require a large
number of hops. If we assume a fully connected graph of PEs and a small share ε
of workers is idle, then each hop of a request corresponds to a Bernoulli process
with success probability ε, and a request takes an expected 1/ε hops until an idle
PE is hit. Consequently, to improve worst-case latencies, a small ratio of workers
should be kept idle [27]. By contrast, our following algorithm with logarithmic
span does not depend on suboptimal utilization.

Matching Requests and Idle PEs. In a first phase, our improved algorithm
(see Fig. 3) computes two prefix sums with one collective operation: the number
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7

Fig. 3. Examples for matching requests and idle PEs. White (gray) squares represent
idle (busy) PEs, spheres (diamonds) represent requests (idle tokens). Left: A prefix sum
(not depicted) numbers all requests and idle tokens, and each request (token) of index
i is sent to rank i. Each PE with a matching pair sends the request to the idle PE.
Right: A job j grows by multiple layers of Tj . Requests are sent along a tree structure
and child-parent relationships of Tj are encoded into the distributed requests.

of requests qi being emitted by PEs of rank < i, and the number oi of idle PEs of
rank < i. We also compute the total sums, qm and om, and communicate them
to all PEs. The qi and oi provide an implicit global numbering of all requests and
all idle PEs. In a second phase, the i-th request and the i-th token are both sent
to rank i. In the third and final phase, each PE which received both a request
and an idle token sends the request to the idle PE referenced by the token.

If the request for a worker wij is only emitted by its designated parent
wb(i−1)/2cj , then our algorithm so far may need to be repeated O(logm) times:
Repetition l activates a worker which then emits requests for repetition l + 1.
Instead, we can let a worker emit requests not only for its direct children, but
for all transitive children it deserves. Each worker wij can compute the number k
of desired transitive children from vj and i. The worker then contributes k to qi.
In the second phase, the k requests can be distributed communication-efficiently
to a range of ranks {x, . . . , x+ k − 1}: wij sends requests for workers w2i+1

j and
w2i+2
j to ranks x and x+1, which send requests for corresponding child workers

to ranks x + 2 through x + 5, and so on, until worker index vj − 1 is reached.
To enable this distribution, we append to each request the values x, vj , and the
rank of the PE where the respective parent worker will be initialized. As such,
each child knows its parent within Tj (Fig. 3) for job-internal communication.

We now outline how our algorithm can be executed in a fully asynchronous
manner. We compute the prefix sums within an In-Order binary tree of PEs [22,
Chapter 13.3], that is, all children in the left subtree of rank i have a rank < i and
all children in the right subtree have a rank > i. This prefix sum computation can
be made sparse and asynchronous: Only non-zero contributions to a prefix sum
are sent upwards explicitly, and there is a minimum delay in between sending
contributions to a parent. Furthermore, we extend our prefix sums to also include
inclusive prefix sums q′i, o′i which denote the number of requests (tokens) at PEs
of rank ≤ i. As such, every PE can see from the difference q′i − qi (o′i − oi) how
many of its local requests (tokens) took part in the prefix sum. Last but not
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least, the number of tokens and the number of requests may not always match
– a PE which receives either a request or an idle token (but not both) knows of
this imbalance due to the total sums qm, om. The unmatched message is sent to
its origin and can re-participate in the next iteration.

Our matching algorithm has O(logm) span and takes O(m) local work. The
maximum local work of any given PE is in O(logm) (to compute the above k),
which is amortized by other PEs because at most m requests are emitted.

3.3 Reuse of Suspended Workers

Each PE remembers up to C most recently used workers (for a small constant
C) and deletes older workers. Therefore, if a worker wij is suspended, it may
be resumed at a later time. Our algorithms so far may choose different PEs
and hence create new workers whenever Tj shrinks and then re-grows. We now
outline how we can increase the reuse of suspended workers.

In our previous approach [27], each worker remembers a limited number of
ranks of its past (direct) children. A worker which desires a child queries them
for reactivation one after the other until success or until all past children have
been queried unsuccessfully, at which point a normal job request is emitted.

We make two improvements to this strategy. First, we remember past workers
in a distributed fashion. More precisely, whenever a worker joins or leaves Tj , we
distribute information along Tj to maintain the following invariant: Each current
leaf wij in Tj remembers the past workers which were located in a subtree below
index i. As such, past workers can be remembered and reused even if Tj shrinks
by multiple layers and re-grows differently.

Secondly, we adjust our scheduling to actively prioritize the reuse of existing
workers over the initialization of new workers. In our implementation, each idle
PE can infer from its local volume calculation (Section 4.1) which of its local
suspended workers wij are eligible for reuse, i.e., vj > i in the current volume
assignment. If a PE has such a worker wij , the PE will reject any job requests
until it received a message regarding wij . This message is either a query to resume
wij or a notification that wij will not be reused. On the opposite side, a worker
which desires a child begins to query past children according to a “most recently
used” strategy. If a query succeeds, all remaining past children are notified that
they will not be reused. If all queries failed, a normal job request is emitted.

4 The Mallob System

In the following, we outline the design and implementation of our platform named
Mallob, short for Malleable Load Balancer. Mallob is a C++ application using
the Message Passing Interface (MPI) [12]. Each PE can be configured to accept
jobs and return responses, e.g., over the local file system or via an internal API.
The application-specific worker running on each PE is defined via an interface
with a small set of methods. These methods define the worker’s behavior if it
is started, suspended, resumed, or terminated, and allow it to send and receive
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application-specific messages at will. Note that we outlined some of Mallob’s
earlier features in previous work [27] with a focus on our malleable SAT engine.

4.1 Implementation of Algorithms

Our system features practical and simplified implementations solving the volume
assignment problem and the request matching problem. We now explain how and
why these implementations differ from the algorithms provided in Section 3.

Volume Assignment. Our implementation computes job volumes similar to
the algorithm outlined in Section 3.1. However, each PE computes the desired
change of root α0 of ξ locally. All events in the system (job arrivals, departures,
and changes in demands) are aggregated and broadcast periodically such that
each PE can maintain a local image of all active jobs’ demands and priorities
[27]. The local search for α0 is then done via bisection over the domain of ξ.
This approach requires more local work than our fully distributed algorithm and
features a broadcast of worst-case message length O(n). However, it only requires
a single all-reduction. At the scale of our current implementation (n < 103

and m < 104), we expect that our simplified approach performs better than
our asymptotically superior algorithm which features several stages of collective
operations. When targeting much larger configurations in the future, it may be
beneficial to implement and employ our fully distributed algorithm instead.

Request Matching. We did not yet implement asynchronous prefix sums as
described in Section 3.2. Instead, we route requests directly along a communica-
tion tree R of PEs. Each PE keeps track of the idle count, i.e., the number of idle
PEs, in each of its subtrees in R. This count is updated transitively whenever the
idle status of a child changes. Emitted requests are routed upwards through R
until hitting an idle PE or until a hit PE has a subtree with a non-zero idle count,
at which point the request is routed down towards the idle PE. If a large number
of requests (close to n) are emitted, the traffic along the root of R may constitute
a bottleneck. However, we found that individual volume updates in the system
typically result in a much smaller number of requests, hence we did not observe
such a bottleneck in practice. We intend to include our bottleneck-free algorithm
(Section 3.2) in a future version of our system.

4.2 Engineering

For good practical performance of our system, careful engineering was necessary.
For instance, our system exclusively features asynchronous communication, i.e.,
a PE will never block for an I/O event when sending or receiving messages. As
a result, our protocols are designed without explicit synchronization (barriers or
similar). We only let the main thread of a PE issue MPI calls, which is the most
widely supported mode of operation for multithreaded MPI programs.
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As we aim for scheduling latencies in the range of milliseconds, each PE must
frequently check its message queue and react to messages. For instance, if the
main thread of a PE allocates space for a large job description, this can cause
a prohibitively long period where no messages are processed. For this reason,
we use a separate thread pool for all tasks which involve a risk of taking a long
time. Furthermore, we split large messages into batches of smaller messages, e.g.,
when transferring large job descriptions to new workers.

5 Evaluation

We now present our experimental evaluation. All experiments have been con-
ducted on the supercomputer SuperMUC-NG. If not specified otherwise, we used
128 compute nodes, each with an Intel Skylake Xeon Platinum 8174 processor
clocked at 2.7GHz with 48 physical cores (96 hardware threads) and 96GB of
main memory. SuperMUC-NG is running Linux (SLES) with kernel version 4.12
at the time of running our experiments. We compiled Mallob with GCC 9 and
with Intel MPI 2019. We launch twelve PEs per machine, assign eight hardware
threads to each PE, and let a worker on a PE use four parallel worker threads.
Our system can use the four remaining hardware threads on each PE in order
to keep disturbance of the actual computation at a minimum. Our software and
experimental data are available at https://github.com/domschrei/mallob.

5.1 Uniform Jobs

In a first set of experiments, we analyze the base performance of our system
by introducing a stream of jobs in such a way that exactly npar jobs are in the
system at any time. We limit each job j to a CPU time budget B inversely
proportional to npar. Each job corresponds to a difficult SAT formula which
cannot be solved within the given budget. As such, we emulate jobs of fixed size.

We chosem and the values of npar in such a way thatm/npar ∈ N for all runs.
We compare our runs against a hypothetical rigid scheduler which functions as
follows: Exactly m/npar PEs are allotted for each job, starting with the first
npar jobs at t = 0. At periodic points in time, all jobs finish and each set of PEs
instantly receives the next job. This leads to perfect utilization and maximizes
throughput. We neglect any kind of overhead for this scheduler.

For a modest number of parallel jobs npar in the system (npar ≤ 192), our
scheduler reaches 99% of the optimal rigid scheduler’s throughput (Table 1).
This efficiency decreases to 97.6% for the largest npar where vj = 2 for each job.
As the CPU time of each job is calculated in terms of its assigned volume and
as the allocation of workers takes some time, each job uses slightly less CPU
time than advertised: Dividing the time for which each job’s workers have been
active by its advertised CPU time, we obtained a work efficiency of η ≥ 99%.
Lastly, we measured the CPU utilization of all worker threads as reported by
the operating system, which averages at 98% or more. In terms of overall work
efficiency η × u, we observed an optimum of 98% at npar = 192, a point where
neither npar nor the size of individual job trees is close to m.
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Table 1. Scheduling uniform jobs on 1536 PEs (6144 cores) compared to a hypothetical
optimal rigid scheduler. From left to right: Max. number npar of parallel jobs; max.
measured throughput θ, optimal throughput θopt (in jobs per second), throughput
efficiency θ/θopt; work efficiency η; mean measured CPU utilization u of worker threads.

npar θ θopt
θ

θopt
η u

3 0.159 0.16 0.991 0.990 0.981
6 0.318 0.32 0.994 0.990 0.983
12 0.636 0.64 0.993 0.991 0.984
24 1.271 1.28 0.993 0.992 0.985
48 2.543 2.56 0.993 0.993 0.985
96 5.071 5.12 0.990 0.993 0.986

192 10.141 10.24 0.990 0.995 0.985
384 20.114 20.48 0.982 0.995 0.983
768 39.972 40.96 0.976 0.992 0.980

5.2 Impact of Priorities

In the following we evaluate the impact of job priorities. We use 32 nodes (1536
cores, 384 PEs) and introduce nine streams of jobs, each stream with a different
job priority p ∈ [0.01, 1] (see Fig. 4 right) and with a wallclock limit of 300 s per
job. As such, the system processes nine jobs with nine different priorities at a
time. Each stream is a permutation of 80 diverse SAT instances [27].

As expected, we observed a proportional relationship between priority and
assigned volume, with small variations due to rounding (Fig. 4). By contrast,
response times appear to decrease exponentially towards a certain lower bound,
which is in line with the NP-hardness of SAT and the diminishing returns of
parallel SAT solving [27]. The modest margin by which average response times
decrease is due to the difficulty of the chosen SAT benchmarks, many of which
cannot be solved within the imposed time limit at either scale.
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Fig. 4. Impact of job priority on mean assigned volume (left axis, blue triangles) and
response time (right axis, orange squares). The table shows the used priorities pj with
the corresponding mean assigned volume ṽj and mean response times in seconds.
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5.3 Realistic Job Arrivals

In the next set of experiments, we analyze the properties of our system in a more
realistic scenario. Four PEs introduce batches of jobs with poisson-distributed
arrivals (inter-arrival time of 1/λ ∈ {2.5 s, 5 s, 10 s}) and between one and eight
jobs per batch. As such, we simulate users which arrive at independent times
and submit a number of jobs at once. We also sample a priority pj ∈ [0.01, 1], a
maximum demand dj ∈ 1, . . . , 1536, and a wallclock limit bj ∈ [1, 600] s for each
job. We ran this experiment with our current request matching (Section 4.1) and
with each request message performing up to h random hops (as in [27]) until our
request matching is employed, for varying values of h. In addition, we ran the
experiment with three different suspended worker reuse strategies: No deliberate
reuse at all, the basic approach from [27], and our current approach.

Fig. 5 (left) shows the number of active jobs in the system over time for our
default configuration (our reuse strategy and immediate matching of requests).
For all tested interarrival times, considerable changes in the system load can
be observed during a job’s average life time which justify the employment of a
malleable scheduling strategy. Fig. 5 (right) illustrates for 1/λ = 5 s that system
utilization is at around 99.8% on average and almost always above 99.5%. We
also measured the ratio of time for which each PE has been idle: The median
PE was busy 99.08% of all time for the least frequent job arrivals (1/λ = 10 s),
99.77% for 1/λ = 5 s, and 99.85% for 1/λ = 2.5 s. Also note that

∑
j dj < m for

the first seconds of each run, hence not all PEs can be utilized immediately.
In the following, we focus on the experiment with 1/λ = 5 s. The latency of

our volume calculation, i.e., the latency until a PE received an updated volume
for an updated job, reached a median of 1ms and a maximum of 34ms for
our default configuration. For the scheduling of an arriving job, Fig. 6 (left)
shows that the lowest latencies were achieved by our request matching (h = 0).
For increasing values of h, the variance of latencies increases and high latencies
(≥ 50ms) become more and more likely. Note that jobs normally enter a fully
utilized system, and have dj = 1. Therefore, the triggered balancing calculation
may render only a single PE idle, which heavily disfavors performing a random
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Fig. 5. Left: Number of active jobs for interarrival times 1/λ of 2.5 s (top), 5 s (middle),
and 10 s (bottom). Right: System utilization (i.e., ratio of busy PEs) for 1/λ = 5 s at
a sliding average of window size 1 s, 15 s, and 60 s respectively.
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Fig. 6. Distribution over measured latency for the initial scheduling of a job (left) and
the expansion of a job tree by another worker (right), for inter arrival rate 1/λ = 5 s,
for a varying number h of random hops until a request message is routed along R.

walk. Regarding the latency of expanding a job tree by another layer, Fig. 6
(right) indicates that requests performing random walks have a high chance to
succeed quickly but can otherwise result in high latencies (> 10ms).

To compare strategies for reusing suspended workers, we divided the number
of created workers for a job j by its maximum assigned volume vj . This Worker
Creation Ratio (WCR) is ideally 1 and becomes larger the more often a worker
is suspended and then re-created at a different PE. We computed the WCR for
each job and in total: As Tab. 2 shows, our approach reduces a WCR of 2.14
down to 1.8 (-15.9%). Context switches (i.e., how many times a PE changed its
affiliation) and average response times are improved marginally compared to the
naive approach. Last but not least, we counted on how many distinct PEs each
wij has been created: Our strategy initializes 89% of all workers only once, and
94% of workers have been created at most five times. We conclude that most
jobs only feature a small number of workers which are rescheduled frequently.

6 Conclusion

We have presented a decentralized and highly scalable approach to online job
scheduling of malleable NP-hard jobs with unknown processing times. We split
our problem into two subproblems, namely the computation of fair job volumes

Table 2. Comparison of worker reuse strategies in terms of worker creation ratio
(WCR, per job – median, maximum – and in total), context switches (CS, median per
PE and mean), the number of processed jobs within 1 h (Pr.), their mean response
time (RT), and the fraction of workers created on at most {1, 2, 5, 10, 25} distinct PEs.

WCR CS Pr [WC≤ ·]
med. max. total med. mean Pr. RT 1 2 5 10 25

None 1.43 33.0 2.14 136 138.2 5923 153.40 0.87 0.90 0.94 0.97 0.992
Basic 1.40 31.5 2.07 134 135.3 5921 153.89 0.87 0.90 0.94 0.97 0.993
Ours 1.25 24.5 1.80 130 131.8 5939 152.33 0.89 0.91 0.94 0.97 0.993



Decentralized Online Scheduling of Malleable NP-hard Jobs 15

and the assignment of jobs to PEs, and proposed scalable distributed algorithms
with O(logm) span for both of them. We presented a practical implementation
and experimentally showed that it schedules incoming jobs within tens of mil-
liseconds, distributes resources proportional to each job’s priority, and leads to
near-optimal utilization of resources.

For future work, we intend to add engines for applications beyond SAT into
our system. Furthermore, we want to generalize our approach to heterogeneous
computing environments and add fault tolerance to our distributed algorithms.
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