Mallob{32,64,1600} in the SAT Competition 2023

Dominik Schreiber
Institute of Theoretical Informatics
Karlsruhe Institute of Technology
Karlsruhe, Germany
dominik.schreiber @kit.edu

Abstract—We describe our submissions of Mallob to the
parallel and cloud tracks of the SAT Competition 2023. Our
changes mostly aim at reducing (computational and memory)
overhead and at reducing turnaround times of shared clauses in
order to reduce redundant work performed.

Index Terms—Parallel SAT solving, distributed SAT solving

I. INTRODUCTION

In this report we describe the configurations of our schedul-
ing and SAT solving system Mallob [1]], [2] which we submit
to this year’s International SAT Competition. As in prior years
[3]-[5] we configure our system to immediately schedule a
single instance (i.e., the problem input) with full demand of
resources and to quit after its processing. While this mode of
operation now supports producing UNSAT proofs [6]], we are
not using this functionality since it adds overhead and limits
the set of usable solvers.

II. OVERVIEW AND SETUP

In contrast to previous submissions [3[]-[5]] where we spawn
one MPI process for each group of four hardware threads
— a heritage from Mallob’s precursor HordeSat [7] — we
now spawn only one MPI process for each physical machine.
This change reduces overhead in terms of run time and
memory usageﬂ It also allows running Mallob as a shared-
memory parallel solver without MPI on a single large machine.
However, the increased degree of concurrency within each
process also uncovered issues in some of our concurrent data
structures that were previously “good enough” when only
using four threads. For this reason we rewrote large portions
of Mallob’s data structures for handling produced clauses (see
Section [III-C). As last year [5]], we run solver threads within
a separate sub-process that is forked from the respective MPI
process. Since restarting a solver process that orchestrates
dozens of solvers leads to significant loss of progress, we
also adjusted our memory panic mechanism [35] to gracefully
terminate and clean up individual solvers in a solver process.
For cases where an out-of-memory situation occurs despite our
precautions, each subprocess now adjusts its out-of-memory
score (oom_score_adj) in such a way that it is the first
process to be killed by the operating system. Killing a SAT
subprocess is always preferrable to killing an MPI process,
since the latter crashes the distributed program.

In particular, each MPI process keeps a copy of the problem input and
additionally writes a copy to a shared-memory segment.

We submit two parallel versions and one distributed
(“cloud”) version of Mallob. We employ 32 (64) Kissat
instancesﬂ in the parallel configuration Mallob32 (Mallob64)
and employ a mix of 800 Kissats, 533 CaDiCaLs, and 267
Lingelings in the distributed configuration Mallob1600. Com-
pared to last year we omit Glucose, which might be slightly
detrimental to overall performance but simplifies our setup and
also renders all parts of our submission Free Software.

Inspired by recent work that involved modifications to
CaDiCaL [6]], we enhanced the clause export implementation
of our Kissat backend: Instead of exporting clauses at conflict
analysis, we now export any new redundant clause that is
created (and any unit that is fixed). As such, solvers can
now also share insights gained from inprocessing techniques
such as probing, vivification, or hyper-ternary resolution. In
addition, we now allow Kissat to import incoming clauses
whenever at decision level zero without waiting for a certain
number of conflicts to occur in between (500 conflicts in our
previous submissions), which can reduce turnaround times of
shared clauses (see Section [[II-B]). We also added some minor
improvements to Kissat’s clause import code and extended its
portfolio to a total of 15 distinct configurations.

III. CLAUSE SHARING

Regarding Mallob’s clause sharing, we introduce a change
in handling LBD scores; an increase of the frequency at which
all-to-all clause sharing is performed; and improvements to
Mallob’s clause filtering and buffering data structures.

A. Handling LBD Scores

We have integrated a technique that was already featured
in TopoSAT 2 [8]: If a solver imports a clause, the clause’s
LBD value is reset to the clause’s length, contrary to our
(HordeSat’s) earlier approach of importing each clause with
its original LBD. The TopoSAT 2 approach takes into account
that LBD is a local metric that depends on the solver state
and therefore may not be meaningful for all solvers globally.
Note that the HordeSat approach may force solvers to keep an
unsustainable number of low-LBD clauses over time while the
TopoSAT 2 approach rather results in solvers discarding many
incoming clauses after a few conflicts.

’In last year’s competition, a misconfiguration lead to our submission
“Mallob-Ki” to use Lingeling instead of Kissat as a solver backend. See
http://algo2.iti.kit.edu/schreiber/downloads/mallob-ki- mallob- Ii.pdf

http://algo2.iti.kit.edu/schreiber/downloads/mallob-ki-mallob-li.pdf

B. Sharing Frequency

Since clause sharing may be considered a kind of distributed
pruning of search space, we suspect that it is beneficial to
minimize the latency between a clause’s production by solver
S and its import by a solver S’. Intuitively, lowering this
“turnaround time” of a clause ¢ may reduce the chance that
S’ enters a sub-space which S already reported as pruned
via c. Therefore, more frequent clause sharing may decrease
the amount of redundant work performed. We increased the
frequency at which all-to-all clause sharing is performed from
1/s to 0.33/s. Accordingly, we scaled down the buffer limit for
each sharing by a factor of three.

C. Clause Filtering and Buffering

We added some improvements and bugfixes to Mallob’s
exact distributed clause filtering mechanism [5]). For instance,
we now use the clause metadata in hash table H to keep
track of the last epoch where a local solver produced a
clause and successfully wrote it into clause buffer B, and
we added a periodic garbage collection which erases clauses
from H whose last sharing and production both range back
beyond the user-defined resharing interval. We also use this
additional information to more reliably block clauses from
being imported by a solver which recently produced them.

In our 2022 implementation of adaptive clause buffers B
[5]l, each slot | for clauses of length [is guarded by a mutex.
Inserting a clause ¢ of length [in B requires locking slot [
as well as potentially all slots I’ > [in succession in order to
erase “worse” clauses and then use the freed budget to insert
c to [. This is acceptable with just four solver threads but
may not scale to our new setup. Rather than actually erasing
clauses from a worse slot I’, we now just mark a deletion
by manipulating an atomic clause counter of slot {’, hence
we only need to lock slot [. The actual deletion takes place
the next time a lock for slot I’ is held. If B is close to full
before flushing, then we also determine the minimum [such
that > 95% of all clauses in B had length [or below. If a
produced clause c is larger than I, then it is highly unlikely
that c is ever exported from B before it is deleted’] and we
discard ¢ without attempting its insertion.

Solvers may occasionally produce large bursts (hundreds of
thousands) of unit clauses, which overburdens B and results
in discarding most produced clauses. For this reason, we now
allow the buffers to store an unlimited number of unit clauses
while keeping the shared budget for all other slots.

Lastly, we have noticed a shortcoming in the merge of
clause buffers during our distributed aggregation [1]. If the
set of available clauses exceeds the current aggregated buffer
limit, then the buffer is truncated, returning excess clauses to
the local solver process. Since clauses are sorted alphanumer-
ically, this may introduce a slight bias to our sharing. We now
randomly select the clauses from the buffer’s “worst” bucket
which make the cut and return the remaining clauses.

3The budget of B is set to 10x the export limit per flush.

IV. INPUT PERMUTATION

Permuting the input before handing it to a solver can be used
as an additional source of diversification. We experimented
with this kind of diversification in 2021 [4] but did not include
it in 2022 since its implementation incurred too much overhead
to be worthwhile. The formula is present as a chunk of shared
memory that is parsed by many solvers concurrently, so direct
manipulations of the formula should be avoided.

This year we reintroduce input permutation for all but the
first ten solvers. In our new implementation, we select up
to k = 128 input clauses to which we store a pointer. The
first clause in the input is always selected while the remaining
k — 1 clauses are selected at random. Each of the k pointers
represents a chunk of the input beginning at the referenced
clause. These &k pointers are then permuted and the input
chunks are read in the corresponding order. This procedure
is cache-friendly and features a non-zero probability for any
pair of clauses (c1, ¢2) to be read in reverse order. In addition,
the order of literals in each clause is shuffled using a single
clause buffer for each solver thread.

ACKNOWLEDGMENT

The author thanks Armin Biere
for providing the solvers Kissat,
CaDiCal, and Lingeling which *x”
our solving system is built upon.

The author gratefully acknowl-

edges the Gauss Centre for Supercomputing e.V. (Www.gauss-
centre.eu) for funding this project by providing computing
time on the GCS Supercomputer SuperMUC-NG at Leibniz
Supercomputing Centre (www.lrz.de). Some preparation for
this work was performed on the HoreKa supercomputer funded
by the Ministry of Science, Research and the Arts Baden-
Wiirttemberg and by the Federal Ministry of Education and
Research. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 882500).

REFERENCES

[1] D. Schreiber and P. Sanders, “Scalable SAT solving in the cloud,” in
Proc. SAT, pp. 518-534, Springer, 2021.

[2] P. Sanders and D. Schreiber, “Decentralized online scheduling of mal-
leable NP-hard jobs,” in Proc. Euro-Par, pp. 119-135, Springer, 2022.

[3] D. Schreiber, “Engineering HordeSat towards malleability: mallob-mono
in the SAT 2020 cloud track,” in Proc. of SAT Competition, pp. 45-46,
2020.

[4] D. Schreiber, “Mallob in the SAT competition 2021,” in Proc. of SAT
Competition 2021, p. 38.

[5] D. Schreiber, “Mallob in the SAT competition 2022, in Proc. of SAT
Competition 2022, pp. 46—47.

[6] D. Michaelson, D. Schreiber, M. J. Heule, B. Kiesl-Reiter, and M. W.
Whalen, “Unsatisfiability proofs for distributed clause-sharing SAT
solvers,” in Proc. TACAS, pp. 348-366, Springer, 2023.

[7] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel portfo-
lio SAT solver,” in International Conference on Theory and Applications
of Satisfiability Testing, pp. 156-172, Springer, 2015.

[8] T. Ehlers and D. Nowotka, “Tuning parallel SAT solvers,” Proceedings
of Pragmatics of SAT, vol. 59, pp. 127-143, 2019.

	Introduction
	Overview and Setup
	Clause Sharing
	Handling LBD Scores
	Sharing Frequency
	Clause Filtering and Buffering

	Input Permutation
	References

