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ABSTRACT
We present our line of work on scalable distributed-memory solvers

for the satisfiability of formulas in propositional logic.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; •
Hardware → Theorem proving and SAT solving.
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1 INTRODUCTION
The problem of propositional satisfiability (SAT), i.e., to decide

whether a formula in propositional logic is satisfiable, is the origi-

nal NP-complete problem [4] and an essential building block for a

plethora of important applications such as formal verification [21],

cryptanalysis [20], and electronic design automation [9] (see [17,

Sect. 2.2.5] for further examples). We describe our line of work on

scalable distributed-memory algorithms for SAT solving. Our two

main thrusts are (a) improving distributed SAT solving approaches

themselves and (b) making efficient use of the computational re-

sources at hand through malleable job scheduling. The featured

parallel algorithms range from decentralized resource negotiation

protocols to compact data exchanges over a fluctuating set of pro-

cesses. Our systemMallob and its integrated distributed SAT solver

MallobSat have attracted international attention, in particular due

to their role in the International SAT Competitions [3, 5].

Context. This overview is based on the 2021 SAT conference

paper “Scalable SAT Solving in the Cloud” [18] and its more recent

follow-ups [17, 19]. We also touch on a 2022 Euro-Par publica-

tion [11], which expands on our decentralized scheduling algo-

rithms. Furthermore, the outlined system was published at the

Journal of Open Source Software (JOSS) [12] and participated in

the International SAT Competition 2020–2023 [13–16]. Lastly, our
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system was the first distributed solver to gain support for produc-

ing proofs of unsatisfiability through a cooperation with Amazon

researchers [10], which is not the focus of this overview.

2 BACKGROUND
The SAT problem is to find an assignment to all Boolean variables

in a propositional formula 𝐹 such that 𝐹 evaluates to true, or to
report unsatisfiability if no such assignment exists. Today’s most

efficient sequential SAT solvers are based on the Conflict-Driven
Clause Learning (CDCL) paradigm: The solver performs a careful

search of the space of partial variable assignments, backtracks and

restarts its search frequently and non-chronologically, and (most

importantly) learns redundant conflict clauses when encountering a

logical conflict [8]. The performance of SAT solvers crucially de-

pends on bookkeeping these conflict clauses to prune the search

space. Parallelizing this search by partitioning the search space [6, 7]

is problematic because good partitionings are difficult to find in

general [2]. The more successful approach is to run many sequen-

tial solvers in parallel on the original formula and to let them share

some of their conflict clauses from time to time. This clause-sharing
portfolio paradigm has been applied before to massively parallel

scales, with mixed results. While Balyo et al.’s HordeSat [1] re-

portedly achieved super-linear speedups for individual instances,

its median speedup was 13 at 2048 cores (i.e., efficiency 0.6%).

3 OVERVIEW
When faced with parallel algorithms that scale sub-linearly, a natu-

ral means to still exploit massively parallel hardware efficiently is

to process many inputs at once. Indeed, an on-demand, multi-user

platform for SAT solving tasks appears promising for many appli-

cations, such as formal verification, where a single task can emit

many propositional formulas [21]. In line with these observations,

we explore online scheduling of distributed tasks whose running

time is unknown in advance. In order to make the best use of com-

putational resources despite this lack of knowledge, we exploit

malleable scheduling, where the computational resources allotted

to a task can fluctuate during the task’s execution. Our approach

is fully decentralized. Each process is affiliated with at most one

job at any given time (but can hold data of further jobs in which

the process is currently inactive). Each job is organized as a binary
tree of processes that can grow and shrink at any time to reflect the

job’s current fair volume 𝑣 𝑗 ∈ N, i.e., the number of processes the

job is supposed to own at that point in time. These job volumes

are computed with a decentralized protocol that takes into account

individual job demands and priorities [18] and can be implemented

in logarithmic span [11]. Idle processes are assigned to job trees by
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Figure 1: Compact tree-based clause exchange approach.

routing requests 𝑟 𝑖
𝑗
(each demanding a process for the 𝑖-th job tree

node of job 𝑗 ) through the system. We explored random walks of

requests; routing requests along a global process tree; and matching

requests and idle processes via asynchronous prefix sums [17]. The

latter two strategies empirically worked the best. In evaluations on

up to 6144 cores of an HPC cluster, our system Mallob (malleable
load balancer) achieved scheduling latencies in the range of few
milliseconds, both for allotting an initial process for an incoming job

and for adding new processes to an existing job. The flexible and

rapid reallocation of resources achieves near-optimal utilization.

In terms of the distributed SAT algorithm running within each

particular job tree, we consider HordeSat as a point of departure

to design a malleable and more scalable distributed SAT solver.

HordeSat’s clause exchange uses an all-gather operation that con-

catenates a fixed amount of data from each processor to one large

array. This array often features gaps, where no information at all is

present, and can contain many duplicate clauses. By contrast, Fig. 1

illustrates our clause exchange approach via an example with seven

processes. Each letter corresponds to a clause, the surrounding box

size representing its length and the color representing its process of

origin. Each process writes its locally best clauses to a space-limited

buffer.We then hierarchically merge these clause sets along a binary

tree of processes. Each input and output is sorted by clause length

in increasing order, which allows to immediately detect and discard

duplicates. (Short clauses are considered the most useful.) Moreover,

we limit each intermediate output in size by a function that grows

sublinear in the number of involved processes, which guarantees

that the operation remains scalable even in huge systems. As such,

the root process obtains a compact buffer that holds the globally
most valuable distinct clauses, which is then broadcast. Following

this operation, the processes perform a second aggregation oper-

ation where they decide, based on tracking their own exported

clauses, which of the shared clauses are new and should indeed be

imported. This generalizes HordeSat’s approximate clause filtering
approach and renders it exact.

We integrated state-of-the-art sequential solvers in our system

and compared HordeSat and our solver MallobSat on up to

2560 cores, using diverse benchmarks from the International SAT

Competition [5]. In our most recent experiments [19], MallobSat

more than doubles HordeSat’s geometric mean speedups and

solves 10.7% more instances. As such, MallobSat has dominated

the massively parallel track of the International SAT Competition

2020–23 [19]. Moreover, we show that repurposing the resources of

a finished job for remaining jobs can significantly reduce response

times in a many-user setting without using any additional resources.
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