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Abstract—We introduce SAT benchmark instances based on
the optimal parallel task scheduling problem P ||Cmax.

Index Terms—SAT solving, scheduling algorithms

I. INTRODUCTION

The strongly NP-hard [9] scheduling problem P ||Cmax

is concerned with mapping a set of n tasks with known
execution times W = {w1, . . . , wn} ∈ Nn

+ to a set of m
identical machines such that the overall completion time Cmax

is minimized [10]. State-of-the-art optimal approaches are
branch-and-bound schemes [3, 7] and ILP translations [16].

While reductions to SAT have previously shown promise
for numerous problems from automated planning [12, 18,
19] and scheduling [5, 6, 14, 23], these works include rule
sets that impose significant logical constraints on feasible
solutions (e.g., causal dependencies or pre– and postconditions
w.r.t. a world state). By contrast, we try a similar approach
for the unconstrained scheduling problem P ||Cmax. In this
report, we outline our encoding on an abstract level—the exact
specification can be found in the 1st author’s master thesis [2].

II. ENCODING

We sort our jobs j1, . . . , jn by duration in decreasing order,
i.e., w1 ≥ . . . ≥ wn. We denote the assignment of job ji to
processor px as Ai = x. We refer to the load of a processor px
as Cx =

∑
i:Ai=x wi. The value to minimize is the completion

time or makespan Cmax = maxx{Cx}.
In order to represent the assignment of job ji to processor

px, we introduce a Boolean variable ai,x. The ordering of jobs
on a certain processor is irrelevant and does not need to be
represented. We ensure that each job ji is assigned to exactly
one processor with a clause (

∨
x ai,x) and O(m2) clauses of

the shape (¬ai,x∨¬ai,x′).1 This results in a total of O(n ·m)
variables and O(n ·m2) clauses to represent the assignments
of jobs to processors. While asymptotically more efficient
encodings exist [22], we found that the simple encoding
suffices for most feasible instances. Finally, we ensure that
the sum of the weights assigned to each processor does not
exceed the considered upper bound U , which is equivalent to
the Pseudo-Boolean Constraint (PBC)

a1,x · w1 + a2,x · w2 + . . .+ an,x · wn ≤ U

1The latter constraints are not actually required and omitting them results
in a satisfiability-equivalent problem. However, we found these constraints to
be useful since they drastically reduce search space.

for each processor px. Among multiple established methods
to encode PBCs into SAT [8, 15, 17, 22], we found encoding
the PBC into a Reduced Ordered Binary Decision Diagram
(BDD) and then encoding the BDD into SAT [1] to be the
most promising approach. Simply put, our BDD is a directed
acyclic graph with a single source node and two outgoing
edges per node, each representing a yes-or-no decision, where
all paths eventually end in true or false. The diagram
represents which combinations of jobs can be assigned to a
processor px such that Cx ≤ U . Moreover, BDDs can be
reduced by merging isomorphic subgraphs and by eliminating
nodes whose decisions are inconsequential. In our case, these
reductions provide useful insights since they back-propagate
the hard constraint Cx ≤ U through the sequences of decisions
and detect infeasible and/or superfluous job combinations. In
addition, we apply some pruning rules to the problem in the
shape of further constraints: We force the i-th unassigned job
onto one of the first i processors of identical load, and we
disallow assigning ji+1 to the first processor which can fit ji
but not ji and ji+1. We also force ji onto px whenever px
has wi space remaining and ji is unassigned. Note that these
rules require to reference the reachable values of Cx after
the first i jobs are already assigned, which our BDD-based
encoding is designed to allow. For details on our encoding
and the arguments of soundness for the underlying pruning
rules, we refer to the 1st author’s master’s thesis [2].

III. BENCHMARKS

We considered instances by Lawrinenko [13] (inspired by
Haouari and Jemmali [11]; summarized and extended by Mrad
and Souayah [16]), which are difficult due to combinatorial
properties. These instances feature n ∈ [20, 220] and n/m ∈
[2, 3] with a number of different distributions of job sizes.
We first ran our SAT-based P ||Cmax scheduling approach
on all instances with a timeout of 500 s (using KISSAT [4]
as a SAT solver) and only consider formulas at which the
SAT solver timed out. We then attempted to solve a random
selection of the remaining instances using 1216 cores (16
nodes) of the HoreKa HPC cluster with MALLOBSAT [20]
with IMPCHECK [21], i.e., with on-the-fly LRAT checking
enabled. We thus consider the results to be reliable. We
selected all 11 instances found to be unsatisfiable and added
nine modestly difficult satisfiable instances (running times
ranging between 13 s and 54 s).



Result Name m

SAT

pcmax-scheduling-m12-8049-55035-SAT.cnf 12
pcmax-scheduling-m15-2352-13561-SAT.cnf 15
pcmax-scheduling-m23-6057-43824-SAT.cnf 23
pcmax-scheduling-m24-17855-226744-SAT.cnf 24
pcmax-scheduling-m24-24102-255206-SAT.cnf 24
pcmax-scheduling-m35-32274-371389-SAT.cnf 35
pcmax-scheduling-m37-28831-324346-SAT.cnf 37
pcmax-scheduling-m40-26287-324155-SAT.cnf 40
pcmax-scheduling-m43-38782-385402-SAT.cnf 43

UNSAT

pcmax-scheduling-m11-1517-6802-UNSAT.cnf 11
pcmax-scheduling-m13-1655-9604-UNSAT.cnf 13
pcmax-scheduling-m13-2011-12813-UNSAT.cnf 13
pcmax-scheduling-m13-2826-11437-UNSAT.cnf 13
pcmax-scheduling-m14-3640-14524-UNSAT.cnf 14
pcmax-scheduling-m19-2974-16501-UNSAT.cnf 19
pcmax-scheduling-m19-10199-62102-UNSAT.cnf 19
pcmax-scheduling-m20-3726-23254-UNSAT.cnf 20
pcmax-scheduling-m20-4135-27005-UNSAT.cnf 20
pcmax-scheduling-m26-6398-62377-UNSAT.cnf 26
pcmax-scheduling-m30-14113-167638-UNSAT.cnf 30

TABLE I
SELECTION OF SUBMITTED BENCHMARKS WITH THE RESULT CLAIMED BY

MALLOBSAT WITH IMPCHECK.

Table I lists the selection of submitted benchmark instances
for future reference. The value of m, the number of variables
and clauses, and the result are part of the file name.
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