
MallobSat and MallobSat-ImpCheck
In the SAT Competition 2024

Dominik Schreiber
Institute of Theoretical Informatics
Karlsruhe Institute of Technology

Karlsruhe, Germany
dominik.schreiber@kit.edu

Abstract—We present the 2024 version of the distributed SAT
solver MALLOBSAT with improved clause sharing techniques
and data structures, updated solvers, and a new approach to
trustworthy solving without explicit proof production.

Index Terms—SAT solving, HPC, proofs

I. INTRODUCTION

We submit the current upstream of the distributed job
scheduling and SAT solving platform MALLOB1 [6, 10, 11].
In line with the author’s dissertation [8], we now use the
following naming scheme: Our job scheduling framework is
named MALLOB whereas its integrated SAT solving engine
is named MALLOBSAT. While there is currently no way
of running MALLOBSAT outside of MALLOB, the platform
MALLOB can support applications beyond SAT solving.

For details on the design decisions and inner workings of
MALLOBSAT, we refer to an article under review [10] and
(slightly older) to the author’s dissertation [8]. In these works
we also describe some adjustments over last year’s competition
version, the most relevant of which are the following:

• We use a new sublinear function to bound the sharing
buffer volume w.r.t. the number of involved processes,
which first grows linearly and then converges to an upper
bound of L = 250 000 literals (per sharing).

• We now increment each incoming clause’s LBD score
rather than resetting it to the clause’s length.

• We implemented a mechanism which compares the actual
volume of successfully shared clauses (after filtering) to
the anticipated sharing volume and tracks the difference
to elastically adjust the next exchange’s sharing limit.

• We fixed bugs in the exact distributed clause filtering, es-
pecially concerning the filtering of self-produced clauses.

• We updated some configuration options such as the
sharing interval (now at 0.5 s).

We submit a performance-focused version of MALLOBSAT
to the cloud track and two versions to the parallel track:
a downscaled version of our cloud submission and a fully
trustworthy version “MallobSat-ImpCheck” (Section III).

II. GENERAL CHANGES

In the following, we focus on changes made since the works
mentioned above [8, 10] to all the versions we submit.

1https://github.com/domschrei/mallob

A. Solvers

We updated KISSAT and CADICAL to their 2023 ver-
sion [3], with the consequence that KISSAT now features fewer
overall configuration options in its portfolio. Using the latest
version of CADICAL with full LRAT support [5] enables our
trusted solving approach (see Section III). Motivated by last
year’s results, where our 64-thread configuration significantly
outperformed the 32-thread configuration, we run 64 solver
threads in the parallel track (and, as always, 16 in the cloud
track). We no longer use diversification via input permutation,
which had no apparent benefit in large-scale tests.

B. Clause Buffers

Once again, we reworked the clause buffering data struc-
ture after we found the prior version to perform disappoint-
ingly [10]. Rather than solver threads explicitly stealing space
from “worse” slots in order to insert a better clause [7], we
now allow unlimited insertions of clauses up to a certain slot,
the quality limit.2 Failed insertion attempts (i.e., beyond the
quality limit) are still being counted for each slot in order
to track the distribution over produced clauses. Each flush
operation counts the number of actual and failed clause literals
per slot until some total literal budget is exceeded. The quality
limit is then updated to the current slot. This particular slot
at the quality limit is the only one with an explicit maximum
capacity, namely the remaining literal budget after considering
all prior slots. Each slot’s memory is a plain array which is
grown as needed during insertions and resized by the flush
operation when below a certain fill ratio. While this can lead
to some slight memory peaks in between clause exchanges, it
allows for very inexpensive insert operations.

C. Infinite Units

For some inputs, we noticed that all or most solver threads
produce tens to hundreds of thousands of unit clauses, in
particular at the beginning of solving. MALLOBSAT so far [7,
8] behaved as follows: Each unit clause is admitted once
to each process’ clause buffer—while duplicates are filtered,
there is no limit to the number of units in a clause buffer.
When the process is prompted to export its clauses, it exports
only these units (since they are of highest priority) or even just

2As before, unit clauses are always admitted.

https://github.com/domschrei/mallob


a subset if there are too many. These units are then aggregated
to a single sharing buffer holding the set of unique exported
units, which stays far behind the anticipated sharing volume
due to the many duplicates. Until all units have been flushed,
clause sharing is completely jammed with those units.

To address this issue, we now allow for unlimited export and
sharing of unit clauses. On a technical level, we introduced a
threshold x such that clauses of length l ≤ x no longer count
towards a sharing buffer’s budget that determines whether
further clauses can be added. For x = 1, since the number
of units that follow from a formula is trivially bounded by
its number V of variables, we never communicate more than
during the formula’s initial transfer. As such, clause sharing
can continue normally while the solvers synchronize all units
they found. This is also reasonable in the sense that unit
clauses do not come with any inherent cost (like added
memory usage in the solvers) and thus should be exchanged
without reservation once. While we believe that x = 2 could
also be useful, we considered a worst-case sharing volume of
O(V 2) to be unacceptable and use x = 1.

This change did necessitate some further changes: So far, we
used a fixed-size block of shared memory to transfer clauses
between the MALLOB process and the SAT process, which is
no longer adequate. Instead we now use UNIX pipes, which
can add some delays but save some memory.

III. MALLOBSAT-IMPCHECK

We introduce a new “trustworthy solving” approach pow-
ered by the IMPCHECK (Immediate Massively Parallel
Propositional Proof Checking) tool chain.3 Rather than pro-
ducing a single persistent proof file and then checking it, which
is possible but suffers from bottlenecks [4], each solver’s
LRAT proof output [5] is checked on-the-fly by a separate
checker process without writing it to disk. To transfer the guar-
antee of a clause’s soundness across processes, each checker
signs each checked clause with a cryptographic signature
(based on 128-bit SIPHASH [1]) which is bundled with the
clause during sharing. The receiving checker validates the
signature before adding the clause like an original, “axiomatic”
clause. Our approach builds on the assumption that checker
processes are the only parties which are able to compute such
signatures, which is ensured via confidential access to the key
K used by SIPHASH. Our trusted processes (a parser, which
emits the parsed formula together with a signature, and the
checkers) are written in around 1000 lines of C99 (with the
ultimate goal of formally verifying them to obtain a verified
distributed solver). Communication between a solver thread
and a checker process is achieved by a named (UNIX) pipe
in each direction, which is indistinguishable from plain file
I/O in terms of the checker’s code. We describe this approach
in full detail in a future publication [9], where we found the
overhead of our approach to be nearly independent of the scale
of solving, reaching 42% of median running time overhead
over non-trusted solving at 2432 cores (32 nodes).

3https://github.com/domschrei/impcheck

We have added two further features to this approach after
its submission [9]: First, checkers now also check and sign
satisfying assignments (with the consequence that at least one
checker per SAT process needs to preserve all of its original
problem clauses throughout solving). Secondly, we run a few
solver threads specifically tuned to find satisfiability (e.g.,
YALSAT [2] and SAT presets for CADICAL and KISSAT)
and run them without emitting proof information or clauses.
If such a solver reports unsatisfiability, the result is discarded.

We only submit this configuration to the parallel track
because only a single submission to the cloud track is allowed
(not because of any technological barrier). Since the checkers
require some added CPU time, we spawn 58 solver threads and
leave the remaining six hardware threads for the checkers.

ACKNOWLEDGMENT

This project has received funding from
the European Research Council (ERC)
under the European Union’s Horizon
2020 research and innovation program
(grant agreement No. 882500). Some of this work was per-
formed on the HoreKa supercomputer funded by the Ministry
of Science, Research and the Arts Baden-Württemberg and by
the Federal Ministry of Education and Research. The authors
gratefully acknowledge the Gauss Centre for Supercomputing
e.V. (www.gauss-centre.eu) for funding this project by provid-
ing computing time on the GCS Supercomputer SuperMUC-
NG at Leibniz Supercomputing Centre (www.lrz.de).

REFERENCES

[1] Jean-Philippe Aumasson and Daniel J Bernstein. “SipHash: a fast
short-input PRF”. In: International Conference on Cryptology in
India. Springer. 2012, pp. 489–508.

[2] Armin Biere. “Yet another local search solver and Lingeling and
friends entering the SAT Competition 2014”. In: SAT Competition.
2. 2014, p. 65.

[3] Armin Biere, Mathias Fleury, and Florian Pollitt. “CaDiCaL vivinst,
IsaSAT, Gimsatul, Kissat, and TabularaSAT Entering the SAT Com-
petition 2023”. In: SAT Competition. 2023, p. 14.

[4] Dawn Michaelson et al. “Unsatisfiability proofs for distributed clause-
sharing SAT solvers”. In: Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Springer. 2023, pp. 348–366.

[5] Florian Pollitt, Mathias Fleury, and Armin Biere. “Faster LRAT
checking than solving with CaDiCaL”. In: Theory and Applications
of Satisfiability Testing (SAT). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023.

[6] Peter Sanders and Dominik Schreiber. “Decentralized online schedul-
ing of malleable NP-hard jobs”. In: Proc. Euro-Par. Springer. 2022,
pp. 119–135.

[7] Dominik Schreiber. “Mallob{32,64,1600} in the SAT Competition
2023”. In: SAT Competition. 2023, pp. 46–47.

[8] Dominik Schreiber. “Scalable SAT Solving and its Application”. PhD
thesis. Karlsruhe Institute of Technology, 2023.

[9] Dominik Schreiber. “Scalable Trusted SAT Solving with on-the-
fly LRAT Checking”. Submitted to SAT. 2024. URL: https : / /
dominikschreiber.de/papers/2024-sat-scalable-pre.pdf.

[10] Dominik Schreiber and Peter Sanders. “MALLOBSAT: Scalable SAT
Solving by Clause Sharing”. Submitted to Journal of Artificial In-
telligence Research (JAIR). 2024. URL: https://dominikschreiber.de/
papers/2024-jair-mallobsat-pre.pdf.

[11] Dominik Schreiber and Peter Sanders. “Scalable SAT Solving in the
Cloud”. In: Theory and Applications of Satisfiability Testing (SAT).
Springer. 2021, pp. 518–534.

https://github.com/domschrei/impcheck
https://dominikschreiber.de/papers/2024-sat-scalable-pre.pdf
https://dominikschreiber.de/papers/2024-sat-scalable-pre.pdf
https://dominikschreiber.de/papers/2024-jair-mallobsat-pre.pdf
https://dominikschreiber.de/papers/2024-jair-mallobsat-pre.pdf

	Introduction
	General Changes
	Solvers
	Clause Buffers
	Infinite Units

	MallobSat-ImpCheck

