
MallobSat: Scalable SAT Solving by Clause Sharing

Journal of Artificial Intelligence Research (JAIR) article · Pragmatics of SAT 2024, Pune, India

Dominik Schreiber, Peter Sanders | August 20, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

• LIVE

SAT’21 paper “Scalable SAT
Solving in the Cloud”,

SAT Competition ’20–23

2023: Dissertation August 2024: JAIR article
“MALLOBSAT: Scalable SAT
Solving by Clause Sharing”

PoS’24 presentation

2/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Context

• LIVE

SAT’21 paper “Scalable SAT
Solving in the Cloud”,

SAT Competition ’20–23

2023: Dissertation

August 2024: JAIR article
“MALLOBSAT: Scalable SAT
Solving by Clause Sharing”

PoS’24 presentation

2/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Context

• LIVE

SAT’21 paper “Scalable SAT
Solving in the Cloud”,

SAT Competition ’20–23

2023: Dissertation August 2024: JAIR article
“MALLOBSAT: Scalable SAT
Solving by Clause Sharing”

PoS’24 presentation

2/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Context

• LIVE

SAT’21 paper “Scalable SAT
Solving in the Cloud”,

SAT Competition ’20–23

2023: Dissertation August 2024: JAIR article
“MALLOBSAT: Scalable SAT
Solving by Clause Sharing”

PoS’24 presentation

2/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Context

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

7 7

7

77

7

6 6

66

6 6

6 6

6 6

6

6 6

6 6

6 6

44

4

4 4

4

3 3

3

3 3

9 9 9

99

9

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6
6

64

7
6

3 9

1

1
1

1

1
1

1
1

1

2

2
2

2

2
2

23

3

4
4

4

4
4

5
5

5
5
5

5

8
8

8

7

7
7

7

7
7

9 3

85

9 4

9 6

Cooperative portfolio

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

Parallel SAT

Experts ≡ diversified sequential
SAT solver threads

Shared information
≡ conflict clauses

3/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Reminder from Two Talks Earlier

Massively parallel solver HordeSat [Balyo et al. 2015]

Modular interface to plug in sequential solvers
Periodic clause exchange

Concatenation of fixed-size clause buffers
Duplicates, unused space in buffers
⇒ often low number of distinct shared clauses

Experiments with ≤ 2048 cores
Surprisingly good scaling for difficult instances
Median speedup at 2048 cores: 13 (efficiency 0.6%)

a

b

c

d

e

f

g

b

c

f

a
e
h

d

c

d

i c

MPI
AllGather

Processes

clause
e

f

g

b

c

f

a
e
h

d

c

d

i

c

buffers

a

b

c

d

Exported

Import clauses to solvers

4/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Distributed SAT: Prior State of the Art

Massively parallel solver HordeSat [Balyo et al. 2015]

Modular interface to plug in sequential solvers
Periodic clause exchange

Concatenation of fixed-size clause buffers
Duplicates, unused space in buffers
⇒ often low number of distinct shared clauses

Experiments with ≤ 2048 cores
Surprisingly good scaling for difficult instances
Median speedup at 2048 cores: 13 (efficiency 0.6%)

a

b

c

d

e

f

g

b

c

f

a
e
h

d

c

d

i c

MPI
AllGather

Processes

clause
e

f

g

b

c

f

a
e
h

d

c

d

i

c

buffers

a

b

c

d

Exported

Import clauses to solvers

4/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Distributed SAT: Prior State of the Art

Fundament: HORDESAT
– Two-level hybrid parallelization
– Periodic all-to-all clause sharing

Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

Prioritize clauses by clause length

Minimize clause turnaround times

Support fluctuating workers (malleability)

S0 S1 Sc-1...

Export buffer

Import
buffers

Select, filter

...

...

...

Filter

Selective export

Collective sharing operation

Sharing buffer

5/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Design Decisions of MALLOBSAT

Fundament: HORDESAT
– Two-level hybrid parallelization
– Periodic all-to-all clause sharing

Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

Prioritize clauses by clause length

Minimize clause turnaround times

Support fluctuating workers (malleability)

S0 S1 Sc-1...

Export buffer

Import
buffers

Select, filter

...

...

...

Filter

Selective export

Collective sharing operation

Sharing buffer

5/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Design Decisions of MALLOBSAT

Fundament: HORDESAT
– Two-level hybrid parallelization
– Periodic all-to-all clause sharing

Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

Prioritize clauses by clause length

Minimize clause turnaround times

Support fluctuating workers (malleability)

S0 S1 Sc-1...

Export buffer

Import
buffers

Select, filter

...

...

...

Filter

Selective export

Collective sharing operation

Sharing buffer

5/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Design Decisions of MALLOBSAT

Fundament: HORDESAT
– Two-level hybrid parallelization
– Periodic all-to-all clause sharing

Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

Prioritize clauses by clause length

Minimize clause turnaround times

Support fluctuating workers (malleability)

S0 S1 Sc-1...

Export buffer

Import
buffers

Select, filter

...

...

...

Filter

Selective export

Collective sharing operation

Sharing buffer

5/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Design Decisions of MALLOBSAT

Fundament: HORDESAT
– Two-level hybrid parallelization
– Periodic all-to-all clause sharing

Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

Prioritize clauses by clause length

Minimize clause turnaround times

Support fluctuating workers (malleability)

S0 S1 Sc-1...

Export buffer

Import
buffers

Select, filter

...

...

...

Filter

Selective export

Collective sharing operation

Sharing buffer

5/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Design Decisions of MALLOBSAT

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

1.

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector

6/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Clause sharing: Our approach

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

i c d f ga e h b c d f

Sorted aggregation

1.

(space-limited, sublinear)

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector

6/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Clause sharing: Our approach

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Sorted aggregation

1.

(space-limited, sublinear)

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector

6/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Clause sharing: Our approach

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Sorted aggregation

a i e h c b d f gBroadcast

1.

2.

(space-limited, sublinear)

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector

6/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Clause sharing: Our approach

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Sorted aggregation

a i e h c b d f gBroadcast

1.

2.

(space-limited, sublinear)

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector

6/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Clause sharing: Our approach

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Sorted aggregation

a i e h c b d f gBroadcast

1.

2.

(space-limited, sublinear)

Filtering of recently shared clauses

a i e h c b d f g

3.

Aggregation:
Bitwise “OR”

6/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Clause sharing: Our approach

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Sorted aggregation

a i e h c b d f gBroadcast

1.

2.

(space-limited, sublinear)

Filtering of recently shared clauses

a i e h c b d f g

Broadcast

3.

4.
a i e h c b d f g

Aggregation:
Bitwise “OR”

Global filter vector

6/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Clause sharing: Our approach

We want to share L literals per sharing but may only get L′ < L successfully shared literals. Why?
1 Processes didn’t produce, export enough clauses
2 Duplicate clauses were detected and eliminated during aggregation
3 Distributed filter blocked some of the transmitted clauses

Fix: Elastic compensation for sharing volume unused for algorithmic reasons (2 , 3)

0 5 10 15 20

Sharing operations

0

5000

10000

15000

20000

25000

#
lit

er
al

s Export limit
Actual incoming
Actual admitted
Target

7/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Enforcing a Sharing Volume

We want to share L literals per sharing but may only get L′ < L successfully shared literals. Why?
1 Processes didn’t produce, export enough clauses
2 Duplicate clauses were detected and eliminated during aggregation
3 Distributed filter blocked some of the transmitted clauses

Fix: Elastic compensation for sharing volume unused for algorithmic reasons (2 , 3)

0 5 10 15 20

Sharing operations

0

5000

10000

15000

20000

25000

#
lit

er
al

s Export limit
Actual incoming
Actual admitted
Target

7/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Enforcing a Sharing Volume

We want to share L literals per sharing but may only get L′ < L successfully shared literals. Why?
1 Processes didn’t produce, export enough clauses
2 Duplicate clauses were detected and eliminated during aggregation
3 Distributed filter blocked some of the transmitted clauses

Fix: Elastic compensation for sharing volume unused for algorithmic reasons (2 , 3)

0 5 10 15 20

Sharing operations

0

5000

10000

15000

20000

25000

#
lit

er
al

s

Export limit
Actual incoming
Actual admitted
Est. incoming
Est. admitted
Target

7/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Enforcing a Sharing Volume

Seq. solving: central metric for whether to keep a clause

But: LBD found by solver A not necessarily meaningful
for solver B! → not as “global” as clause length

Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
⇒ Growing overhead (time, space) from low-LBD clauses

Our current approach: Increment each LBD before import

Maintains LBD-based prioritization of clauses

Solver keeps more control over its LBD-2-clauses

(1) 2 |c|. . .

LBD

LBD′

3

Median RAM PAR-2

Orig. LBD 108.8 GiB 75.7
Reset LBD 95.6 GiB 74.3
LBD++ 97.3 GiB 72.9

768 cores × 349 instances × 300 s

8/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Handling LBD Values

Seq. solving: central metric for whether to keep a clause

But: LBD found by solver A not necessarily meaningful
for solver B! → not as “global” as clause length

Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
⇒ Growing overhead (time, space) from low-LBD clauses

Our current approach: Increment each LBD before import

Maintains LBD-based prioritization of clauses

Solver keeps more control over its LBD-2-clauses

(1) 2 |c|. . .

LBD

LBD′

3

Median RAM PAR-2

Orig. LBD 108.8 GiB 75.7
Reset LBD 95.6 GiB 74.3
LBD++ 97.3 GiB 72.9

768 cores × 349 instances × 300 s

8/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Handling LBD Values

Seq. solving: central metric for whether to keep a clause

But: LBD found by solver A not necessarily meaningful
for solver B! → not as “global” as clause length

Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
⇒ Growing overhead (time, space) from low-LBD clauses

Our current approach: Increment each LBD before import

Maintains LBD-based prioritization of clauses

Solver keeps more control over its LBD-2-clauses

(1) 2 |c|. . .

LBD

LBD′

3

Median RAM PAR-2

Orig. LBD 108.8 GiB 75.7
Reset LBD 95.6 GiB 74.3
LBD++ 97.3 GiB 72.9

768 cores × 349 instances × 300 s

8/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Handling LBD Values

Solver backends:

LINGELING + YALSAT local search solver

GLUCOSE + SYRUP clause sharing code

CADICAL

KISSAT

Diversification:

Cycle through solver configuration options: restart intervals, pre–/inprocessing techniques, . . .

Sparse random variable phases

Seeds, input shuffling, Gaussian noise for numeric parameters

9/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Portfolio & Diversification

“Experiments showed that HORDESAT can achieve
superlinear average speedup on hard benchmarks.”

Balyo et al. (2016):

10/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Pitfalls in Parallel Solver Evaluation

“Experiments showed that HORDESAT can achieve
superlinear average speedup on hard benchmarks.”

Balyo et al. (2016):

Superlinear speedups: erratic,
often due to running time variance
or some crucial solver configuration
the sequential solver is missing

10/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Pitfalls in Parallel Solver Evaluation

“Experiments showed that HORDESAT can achieve
superlinear average speedup on hard benchmarks.”

Balyo et al. (2016):

Superlinear speedups: erratic,
often due to running time variance
or some crucial solver configuration
the sequential solver is missing

Arithmetic average of speedups:
no statistical meaning –
use geometric mean or median

10/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Pitfalls in Parallel Solver Evaluation

“Experiments showed that HORDESAT can achieve
superlinear average speedup on hard benchmarks.”

Balyo et al. (2016):

Superlinear speedups: erratic,
often due to running time variance
or some crucial solver configuration
the sequential solver is missing

Arithmetic average of speedups:
no statistical meaning –
use geometric mean or median

Counting sequential timeouts as
solved at the timeout:
makes speedups difficult to interpret,
especially for huge timeouts

10/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Pitfalls in Parallel Solver Evaluation

24 48 96 192 384 768 1536 3072
cores of SuperMUC-NG (log. scale)

0

10

20

30

40

S
pe

ed
up

(g
eo

m
.

m
ea

n)

MALLOBSAT (KCL)
HORDESAT (L)

Weak Scaling

0 1800 3600 5400 7200
Bound x for running time Tseq of seq. solver [s]

0

100

200

300

400

500

600

700

800

S
pe

ed
up

on
ta

sk
s

w
ith

T
se

q
≥

x

3072 cores
1536 cores
768 cores
384 cores
192 cores
96 cores
48 cores
24 cores

400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s

11/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Scaling

24 48 96 192 384 768 1536 3072
cores of SuperMUC-NG (log. scale)

0

10

20

30

40

S
pe

ed
up

(g
eo

m
.

m
ea

n)

MALLOBSAT (KCL)
HORDESAT (L)
(# solved)

(257)
(187)

(331)

(299)

(337)

Weak Scaling

0 1800 3600 5400 7200
Bound x for running time Tseq of seq. solver [s]

0

100

200

300

400

500

600

700

800

S
pe

ed
up

on
ta

sk
s

w
ith

T
se

q
≥

x

3072 cores
1536 cores
768 cores
384 cores
192 cores
96 cores
48 cores
24 cores

400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s

11/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Scaling

24 48 96 192 384 768 1536 3072
cores of SuperMUC-NG (log. scale)

0

10

20

30

40

S
pe

ed
up

(g
eo

m
.

m
ea

n)

MALLOBSAT (KCL)
HORDESAT (L)
(# solved)

(257)
(187)

(331)

(299)

(337)

Weak Scaling

0 1800 3600 5400 7200
Bound x for running time Tseq of seq. solver [s]

0

100

200

300

400

500

600

700

800

S
pe

ed
up

on
ta

sk
s

w
ith

T
se

q
≥

x

3072 cores
1536 cores
768 cores
384 cores
192 cores
96 cores
48 cores
24 cores

400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s

11/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Scaling

10−1 100 101 102

Running time t [s]

0

50

100

150

200

250

300

#
in

st
a
n

ce
s

so
lv

ed
in
≤
t
s +div +sharing

−div +sharing

+div −sharing

−div −sharing

Without sharing, diversification is highly effective

With sharing: Only ≈ 40 distinct solver programs across
768 cores still perform competitively?!

Threads receive shared clauses at differing points in time
“Butterfly effect” ⇒ deviating exploration
Clause sharing as distributed search space pruning

Similar findings @ 3072 cores
Default CADICAL with primitive diversification
(seeds, phases) performs competitively
Fully diversified portfolio without clause sharing does not

349 problems from SAT Comp. 2022 · KCL portfolio

12/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Impact of Diversification, Sharing @ 768 Cores

10−1 100 101 102

Running time t [s]

0

50

100

150

200

250

300

#
in

st
a
n

ce
s

so
lv

ed
in
≤
t
s +div +sharing

−div +sharing

+div −sharing

−div −sharing

Without sharing, diversification is highly effective
With sharing: Only ≈ 40 distinct solver programs across
768 cores still perform competitively?!

Threads receive shared clauses at differing points in time
“Butterfly effect” ⇒ deviating exploration
Clause sharing as distributed search space pruning

Similar findings @ 3072 cores
Default CADICAL with primitive diversification
(seeds, phases) performs competitively
Fully diversified portfolio without clause sharing does not

349 problems from SAT Comp. 2022 · KCL portfolio

12/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Impact of Diversification, Sharing @ 768 Cores

10−1 100 101 102

Running time t [s]

0

50

100

150

200

250

300

#
in

st
a
n

ce
s

so
lv

ed
in
≤
t
s +div +sharing

−div +sharing

+div −sharing

−div −sharing

Without sharing, diversification is highly effective
With sharing: Only ≈ 40 distinct solver programs across
768 cores still perform competitively?!

Threads receive shared clauses at differing points in time
“Butterfly effect” ⇒ deviating exploration
Clause sharing as distributed search space pruning

Similar findings @ 3072 cores
Default CADICAL with primitive diversification
(seeds, phases) performs competitively
Fully diversified portfolio without clause sharing does not

349 problems from SAT Comp. 2022 · KCL portfolio

12/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Impact of Diversification, Sharing @ 768 Cores

10−1 100 101 102

Running time t [s]

0

50

100

150

200

250

300

#
in

st
a
n

ce
s

so
lv

ed
in
≤
t
s +div +sharing

−div +sharing

+div −sharing

−div −sharing

Without sharing, diversification is highly effective
With sharing: Only ≈ 40 distinct solver programs across
768 cores still perform competitively?!

Threads receive shared clauses at differing points in time
“Butterfly effect” ⇒ deviating exploration
Clause sharing as distributed search space pruning

Similar findings @ 3072 cores
Default CADICAL with primitive diversification
(seeds, phases) performs competitively
Fully diversified portfolio without clause sharing does not

349 problems from SAT Comp. 2022 · KCL portfolio

12/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Impact of Diversification, Sharing @ 768 Cores

Prevalent concept in literature: Portfolio solver with clause sharing / Clause-sharing portfolio

“each thread runs a different SAT solver on the same instance[, which] in combination with clause-sharing
leads to surprisingly good performance for small portfolio sizes” – Ozdemir et al., 2021

Our view, based on empirical observations:

MALLOBSAT is a Clause-sharing solver with diversification

Clause sharing = main driver of scalability

Adding explicit diversification is beneficial but not essential

Applicability to other solvers?

13/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

MallobSat: A Portfolio Solver?

Prevalent concept in literature: Portfolio solver with clause sharing / Clause-sharing portfolio

“each thread runs a different SAT solver on the same instance[, which] in combination with clause-sharing
leads to surprisingly good performance for small portfolio sizes” – Ozdemir et al., 2021

Our view, based on empirical observations:

MALLOBSAT is a Clause-sharing solver with diversification

Clause sharing = main driver of scalability

Adding explicit diversification is beneficial but not essential

Applicability to other solvers?

13/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

MallobSat: A Portfolio Solver?

MALLOBSAT . . .

. . . was the best cloud solver 2020–23 and among the top parallel solvers 2021–23

. . . was able to solve 22/100 previously unsolved instances within 20 min @ 3072 cores

. . . performs well in on-demand settings coupled with malleable job scheduling
Solve hundreds of instances at once, redistributing resources based on perceived difficulty

. . . supports incremental SAT solving (CADICAL, LINGELING only; no proofs)

. . . supports proof checking (CADICAL only; non-incremental only)
– more on Thursday, 10:30 AM!

14/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

MALLOBSAT: Further Notes

MALLOBSAT . . .

. . . was the best cloud solver 2020–23 and among the top parallel solvers 2021–23

. . . was able to solve 22/100 previously unsolved instances within 20 min @ 3072 cores

. . . performs well in on-demand settings coupled with malleable job scheduling
Solve hundreds of instances at once, redistributing resources based on perceived difficulty

. . . supports incremental SAT solving (CADICAL, LINGELING only; no proofs)

. . . supports proof checking (CADICAL only; non-incremental only)
– more on Thursday, 10:30 AM!

14/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

MALLOBSAT: Further Notes

Testimonials
“Mallob-mono is now, by a wide margin, the most powerful SAT solver
on the planet.” —Byron Cook, Amazon Science, 2021

https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

Best cloud solver @ International SAT Competition 2020–2023

Mallob(Sat) @ GitHub

github.com/
domschrei/mallob

JAIR article

jair.org/index.php/
jair/article/view/15827

15/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Wrap-Up

https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

The assembly of logicians
Complex logic puzzle

n logic experts want to solve the puzzle

Experts tend to work the best undisturbed

How to coordinate our experts?

3 9
7 3

6 8
9

4 5
4 9
8 3 5 9 2

3 6
9 6
7
2 8

6 8
3 8

16/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Parallel Logical Reasoning

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

Parallel portfolio

All experts work on original
problem independently

Different approaches lead to
different insights

Only one expert needs to find a
solution!

17/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Pure Portfolio

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

Parallel portfolio

All experts work on original
problem independently

Different approaches lead to
different insights

Only one expert needs to find a
solution!

17/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Pure Portfolio

Virtual Best Solver (VBS) / Oracle
Consider n algorithms A1, . . . ,An where for each input x , algorithm Ai has run time TAi (x).
The Virtual Best Solver (VBS) for A1, . . . ,An has run time T ∗(x) = min{TA1(x), . . . ,TAn(x)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x , the speedup of P is defined as sP(x) = TQ(x)/TP(x)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
There is always a sequential algorithm performing at least as well
Consequence: Not resource efficient, not scalable

18/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle
Consider n algorithms A1, . . . ,An where for each input x , algorithm Ai has run time TAi (x).
The Virtual Best Solver (VBS) for A1, . . . ,An has run time T ∗(x) = min{TA1(x), . . . ,TAn(x)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x , the speedup of P is defined as sP(x) = TQ(x)/TP(x)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
There is always a sequential algorithm performing at least as well
Consequence: Not resource efficient, not scalable

18/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle
Consider n algorithms A1, . . . ,An where for each input x , algorithm Ai has run time TAi (x).
The Virtual Best Solver (VBS) for A1, . . . ,An has run time T ∗(x) = min{TA1(x), . . . ,TAn(x)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x , the speedup of P is defined as sP(x) = TQ(x)/TP(x)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
There is always a sequential algorithm performing at least as well
Consequence: Not resource efficient, not scalable

18/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle
Consider n algorithms A1, . . . ,An where for each input x , algorithm Ai has run time TAi (x).
The Virtual Best Solver (VBS) for A1, . . . ,An has run time T ∗(x) = min{TA1(x), . . . ,TAn(x)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x , the speedup of P is defined as sP(x) = TQ(x)/TP(x)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
There is always a sequential algorithm performing at least as well
Consequence: Not resource efficient, not scalable

18/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Pure Portfolio: Oracle view vs. Speedup view

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

19/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Cooperative Portfolio

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

19/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Cooperative Portfolio

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

19/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Cooperative Portfolio

6@ (1,2)
3@ (2,8)

9@ (8,8) 4@ (4,5)

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

19/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Cooperative Portfolio

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

7 7

7

77

7

6 6

66

6 6

6 6

6 6

6

6 6

6 6

6 6

44

4

4 4

4

3 3

3

3 3

9 9 9

99

9

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

19/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Cooperative Portfolio

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

7 7

7

77

7

6 6

66

6 6

6 6

6 6

6

6 6

6 6

6 6

44

4

4 4

4

3 3

3

3 3

9 9 9

99

9

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6
6

64

7
6

3 9

1

1
1

1

1
1

1
1

1

2

2
2

2

2
2

23

3

4
4

4

4
4

5
5

5
5
5

5

8
8

8

7

7
7

7

7
7

9 3

85

9 4

9 6

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

19/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Cooperative Portfolio

10−1 100 101 102

KCL + conf. [s] (159 , 180)

10−1

100

101

102

C
,

n
o

co
n

f.
[s

]
(1

55
,

1
7
6

)

SAT

UNSAT

10−1 100 101 102

KCL + sharing [s] (159 , 178)

10−1

100

101

102

K
C

L
,

n
o

sh
ar

in
g

[s
]

(1
5
1

,
1
10

)

SAT

UNSAT

20/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Impact of Diversification, Sharing @ 3072 Cores

ManySAT
Plingeling

Paracooba

PaSAT

PSATO

PaInLess

HordeSat
MallobSat
Gimsatul ppfolio

Diversification

Explicit partitioning

Clause sharing

MergeSATTreengeling

AmPharoS

Dagster

PRS Qsat
?

21/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Parallel SAT Landscape

ManySAT
Plingeling

Paracooba

PaSAT

PSATO

PaInLess

HordeSat
MallobSat
Gimsatul ppfolio“pure”

MallobSat

Diversification

Explicit partitioning

Clause sharing

MergeSATTreengeling

AmPharoS

Dagster

PRS Qsat

21/15 2024-08-20 Schreiber, Sanders: MallobSat: Scalable SAT Solving by Clause Sharing KIT | Algorithm Engineering

Parallel SAT Landscape

