
Trusted Scalable SAT Solving with on-the-fly LRAT Checking

SAT 2024, Pune, India

Dominik Schreiber | August 22, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Distributed clause-sharing solvers push the frontier of feasible problems.

Many sequential CDCL solvers run in parallel

Careful exchange of useful conflict clauses

Mean speedup of 419 @ 3072 cores for difficult instances [SS24]

Proofs of unsatisfiability are central for trust in SAT solving.

Model checking critical software? UNSAT claims safety!

Suffices to trust independent proof checker (+ underlying technology)

Parallel & distributed solvers are harder to trust than sequential solvers.

Large technology stack leaves more room for bugs, errors

More difficult and expensive to test rigorously

Fragile – a single bit flip in a clause can induce a wrong result

2/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Motivation

Distributed clause-sharing solvers push the frontier of feasible problems.

Many sequential CDCL solvers run in parallel

Careful exchange of useful conflict clauses

Mean speedup of 419 @ 3072 cores for difficult instances [SS24]

Proofs of unsatisfiability are central for trust in SAT solving.

Model checking critical software? UNSAT claims safety!

Suffices to trust independent proof checker (+ underlying technology)

Parallel & distributed solvers are harder to trust than sequential solvers.

Large technology stack leaves more room for bugs, errors

More difficult and expensive to test rigorously

Fragile – a single bit flip in a clause can induce a wrong result

2/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Motivation

Distributed clause-sharing solvers push the frontier of feasible problems.

Many sequential CDCL solvers run in parallel

Careful exchange of useful conflict clauses

Mean speedup of 419 @ 3072 cores for difficult instances [SS24]

Proofs of unsatisfiability are central for trust in SAT solving.

Model checking critical software? UNSAT claims safety!

Suffices to trust independent proof checker (+ underlying technology)

Parallel & distributed solvers are harder to trust than sequential solvers.

Large technology stack leaves more room for bugs, errors

More difficult and expensive to test rigorously

Fragile – a single bit flip in a clause can induce a wrong result

2/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Motivation

Producing proofs from parallel clause sharing is challenging.

Popular DRAT format does not scale in parallel settings [HMP14; FB22]

Explicit dependency data in LRAT format allows for feasible
distributed proof production [Mic+23]

1 Write individual partial proofs during solving
2 Rewind solving + sharing, funnel required derivations into single file
3 Check combined proof file

Bottleneck: sequential assembly and checking of monolithic proof
Throttled by I/O bandwidth at final process
Sometimes hundreds of Gigabytes of proof information
Proof production + checking @ 1520 cores takes ≈ 3× solving time
(latest setup – submitted to JAR)
Intuition “If solving fits into RAM, checking will as well ” no longer holds

a ∨ b
b ∨ c
a ∨ c
del a ∨ b
...D

R
A

T

Clauses derived during solving

Solving

E
la

ps
ed

tim
e

Proof tracing

Processing, checking

+ combination

+ proof logging

3/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

The Story Thus Far

Producing proofs from parallel clause sharing is challenging.

Popular DRAT format does not scale in parallel settings [HMP14; FB22]

Explicit dependency data in LRAT format allows for feasible
distributed proof production [Mic+23]

1 Write individual partial proofs during solving
2 Rewind solving + sharing, funnel required derivations into single file
3 Check combined proof file

Bottleneck: sequential assembly and checking of monolithic proof
Throttled by I/O bandwidth at final process
Sometimes hundreds of Gigabytes of proof information
Proof production + checking @ 1520 cores takes ≈ 3× solving time
(latest setup – submitted to JAR)
Intuition “If solving fits into RAM, checking will as well ” no longer holds

a ∨ b
b ∨ c
a ∨ c
del a ∨ b

1765 : a ∨ b | 823, 1277
1766 : b ∨ c | 1338, 54
1767 : a ∨ c | 1765, 1766
del 1765

...

...

D
R

A
T

LR
A

T

Clauses derived during solving

Solving

E
la

ps
ed

tim
e

Proof tracing

Processing, checking

+ combination

+ proof logging

3/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

The Story Thus Far

Producing proofs from parallel clause sharing is challenging.

Popular DRAT format does not scale in parallel settings [HMP14; FB22]

Explicit dependency data in LRAT format allows for feasible
distributed proof production [Mic+23]

1 Write individual partial proofs during solving
2 Rewind solving + sharing, funnel required derivations into single file
3 Check combined proof file

Bottleneck: sequential assembly and checking of monolithic proof
Throttled by I/O bandwidth at final process
Sometimes hundreds of Gigabytes of proof information
Proof production + checking @ 1520 cores takes ≈ 3× solving time
(latest setup – submitted to JAR)
Intuition “If solving fits into RAM, checking will as well ” no longer holds

a ∨ b
b ∨ c
a ∨ c
del a ∨ b

1765 : a ∨ b | 823, 1277
1766 : b ∨ c | 1338, 54
1767 : a ∨ c | 1765, 1766
del 1765

...

...

D
R

A
T

LR
A

T

Clauses derived during solving

Solving

E
la

ps
ed

tim
e

Proof tracing

Processing, checking

+ combination

+ proof logging

3/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

The Story Thus Far

Producing proofs from parallel clause sharing is challenging.

Popular DRAT format does not scale in parallel settings [HMP14; FB22]

Explicit dependency data in LRAT format allows for feasible
distributed proof production [Mic+23]

1 Write individual partial proofs during solving
2 Rewind solving + sharing, funnel required derivations into single file
3 Check combined proof file

Bottleneck: sequential assembly and checking of monolithic proof
Throttled by I/O bandwidth at final process
Sometimes hundreds of Gigabytes of proof information
Proof production + checking @ 1520 cores takes ≈ 3× solving time
(latest setup – submitted to JAR)
Intuition “If solving fits into RAM, checking will as well ” no longer holds

a ∨ b
b ∨ c
a ∨ c
del a ∨ b

1765 : a ∨ b | 823, 1277
1766 : b ∨ c | 1338, 54
1767 : a ∨ c | 1765, 1766
del 1765

...

...

D
R

A
T

LR
A

T

Clauses derived during solving

Solving

E
la

ps
ed

tim
e

Proof tracing

Processing, checking

+ combination

+ proof logging

3/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

The Story Thus Far

Marijn Heule: Since LRAT checking is so efficient, we can feasibly do it in realtime!

mkfifo lratproof.pipe // create “pipe” file

// Solve & check concurrently via pipe

./solver input.cnf lratproof.pipe &

./lrat-check input.cnf lratproof.pipe

CheckerSAT

named pipe

No disk I/O, direct inter-process communication

Program code indistinguishable from plain file I/O (only difference: mkfifo)

Does not yield a persistent artifact to validate by independent parties

4/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

On-the-fly Checking with Sequential Solvers

Marijn Heule: Since LRAT checking is so efficient, we can feasibly do it in realtime!

mkfifo lratproof.pipe // create “pipe” file

// Solve & check concurrently via pipe

./solver input.cnf lratproof.pipe &

./lrat-check input.cnf lratproof.pipe

CheckerSAT

named pipe

No disk I/O, direct inter-process communication

Program code indistinguishable from plain file I/O (only difference: mkfifo)

Does not yield a persistent artifact to validate by independent parties

4/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

On-the-fly Checking with Sequential Solvers

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT

5/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A First Parallel & Distributed Setup

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT

c

c✓

c

5/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A First Parallel & Distributed Setup

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT

c

c✓

c

c

c

5/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A First Parallel & Distributed Setup

Which components do we still need to trust?

Parser (reads correct formula correctly)

I/O error?

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Application bug?

Distributed communication (does not compromise / corrupt / truncate a message)

MPI bugs?

The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

In terms of limiting our “trusted parties”, we haven’t really gained anything.

Goal: Only need to trust the parser and checkers, nothing else!

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

Parser (reads correct formula correctly)

I/O error?

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Application bug?

Distributed communication (does not compromise / corrupt / truncate a message)

MPI bugs?

The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

In terms of limiting our “trusted parties”, we haven’t really gained anything.

Goal: Only need to trust the parser and checkers, nothing else!

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

Parser (reads correct formula correctly)

I/O error?

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Application bug?

Distributed communication (does not compromise / corrupt / truncate a message)

MPI bugs?

The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

In terms of limiting our “trusted parties”, we haven’t really gained anything.

Goal: Only need to trust the parser and checkers, nothing else!

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

Parser (reads correct formula correctly)

I/O error?

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Application bug?

Distributed communication (does not compromise / corrupt / truncate a message)

MPI bugs?

The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

In terms of limiting our “trusted parties”, we haven’t really gained anything.

Goal: Only need to trust the parser and checkers, nothing else!

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

Parser (reads correct formula correctly)

I/O error?

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Application bug?

Distributed communication (does not compromise / corrupt / truncate a message)

MPI bugs?

The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

In terms of limiting our “trusted parties”, we haven’t really gained anything.

Goal: Only need to trust the parser and checkers, nothing else!

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

Parser (reads correct formula correctly) I/O error?

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing) Application bug?

Distributed communication (does not compromise / corrupt / truncate a message) MPI bugs?

The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

In terms of limiting our “trusted parties”, we haven’t really gained anything.

Goal: Only need to trust the parser and checkers, nothing else!

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

Parser (reads correct formula correctly) I/O error?

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing) Application bug?

Distributed communication (does not compromise / corrupt / truncate a message) MPI bugs?

The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

In terms of limiting our “trusted parties”, we haven’t really gained anything.

Goal: Only need to trust the parser and checkers, nothing else!

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

Parser (reads correct formula correctly) I/O error?

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing) Application bug?

Distributed communication (does not compromise / corrupt / truncate a message) MPI bugs?

The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

In terms of limiting our “trusted parties”, we haven’t really gained anything.

Goal: Only need to trust the parser and checkers, nothing else!

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A Question of Trust

d12e6a68fc3456e95d64a735555783d6ID: 159514 | Lits: 4 ∨ 163 ∨ 145 ∨ 28 ∨ 158
SClause Signature

Assumption: Parser and checkers know a “secret” signature function S

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT

7/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (1/2)

d12e6a68fc3456e95d64a735555783d6ID: 159514 | Lits: 4 ∨ 163 ∨ 145 ∨ 28 ∨ 158
SClause Signature

Assumption: Parser and checkers know a “secret” signature function S

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT

7/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (1/2)

d12e6a68fc3456e95d64a735555783d6ID: 159514 | Lits: 4 ∨ 163 ∨ 145 ∨ 28 ∨ 158
SClause Signature

Assumption: Parser and checkers know a “secret” signature function S

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT
F , S(F)

Base S(c) on S(F)!

7/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (1/2)

d12e6a68fc3456e95d64a735555783d6ID: 159514 | Lits: 4 ∨ 163 ∨ 145 ∨ 28 ∨ 158
SClause Signature

Assumption: Parser and checkers know a “secret” signature function S

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT
F , S(F)

c c ,
S(c)

c✓

Base S(c) on S(F)!

7/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (1/2)

d12e6a68fc3456e95d64a735555783d6ID: 159514 | Lits: 4 ∨ 163 ∨ 145 ∨ 28 ∨ 158
SClause Signature

Assumption: Parser and checkers know a “secret” signature function S

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT
F , S(F)

c c ,
S(c)

c , S(c)

c✓

Base S(c) on S(F)!

7/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (1/2)

d12e6a68fc3456e95d64a735555783d6ID: 159514 | Lits: 4 ∨ 163 ∨ 145 ∨ 28 ∨ 158
SClause Signature

Assumption: Parser and checkers know a “secret” signature function S

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT
F , S(F)

c c ,
S(c)

c , S(c)

c✓

c , S(c)

S(c)✓

Base S(c) on S(F)!

7/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (1/2)

General framework: Message Authentication Code (MAC)
Allows trusted parties to sign and validate messages using shared secret K
Ensures authenticity (no confidentiality)

Chosen function: SipHash [AB12] – keyed hash function S(x) := HK (x)
Fast – only uses add-rotate-xor (ARX)
Popular, battle-tested, scrutinized

Only trusted processes (parser, checkers) may know K
Ensure K is present only in memory space of trusted processes
Current setup: K is hard-compiled into trusted processes

S(F) := HK (F) , S(c) := HK
(
id(c) || c || S(F)

)
, S(⊥) := HK

(
20 || S(F)

)

8/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (2/2)

General framework: Message Authentication Code (MAC)
Allows trusted parties to sign and validate messages using shared secret K
Ensures authenticity (no confidentiality)

Chosen function: SipHash [AB12] – keyed hash function S(x) := HK (x)
Fast – only uses add-rotate-xor (ARX)
Popular, battle-tested, scrutinized

Only trusted processes (parser, checkers) may know K
Ensure K is present only in memory space of trusted processes
Current setup: K is hard-compiled into trusted processes

S(F) := HK (F) , S(c) := HK
(
id(c) || c || S(F)

)
, S(⊥) := HK

(
20 || S(F)

)

8/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (2/2)

General framework: Message Authentication Code (MAC)
Allows trusted parties to sign and validate messages using shared secret K
Ensures authenticity (no confidentiality)

Chosen function: SipHash [AB12] – keyed hash function S(x) := HK (x)
Fast – only uses add-rotate-xor (ARX)
Popular, battle-tested, scrutinized

Only trusted processes (parser, checkers) may know K
Ensure K is present only in memory space of trusted processes
Current setup: K is hard-compiled into trusted processes

S(F) := HK (F) , S(c) := HK
(
id(c) || c || S(F)

)
, S(⊥) := HK

(
20 || S(F)

)

8/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (2/2)

General framework: Message Authentication Code (MAC)
Allows trusted parties to sign and validate messages using shared secret K
Ensures authenticity (no confidentiality)

Chosen function: SipHash [AB12] – keyed hash function S(x) := HK (x)
Fast – only uses add-rotate-xor (ARX)
Popular, battle-tested, scrutinized

Only trusted processes (parser, checkers) may know K
Ensure K is present only in memory space of trusted processes
Current setup: K is hard-compiled into trusted processes

S(F) := HK (F) , S(c) := HK
(
id(c) || c || S(F)

)
, S(⊥) := HK

(
20 || S(F)

)

8/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (2/2)

General framework: Message Authentication Code (MAC)
Allows trusted parties to sign and validate messages using shared secret K
Ensures authenticity (no confidentiality)

Chosen function: SipHash [AB12] – keyed hash function S(x) := HK (x)
Fast – only uses add-rotate-xor (ARX)
Popular, battle-tested, scrutinized

Only trusted processes (parser, checkers) may know K
Ensure K is present only in memory space of trusted processes
Current setup: K is hard-compiled into trusted processes

S(F) := HK (F || 0(2 bytes)) , S(c) := HK
(
id(c) || c || S(F)

)
, S(⊥) := HK

(
20(1 byte) || S(F)

)

8/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (2/2)

What breaks our approach?

Obtain S(⊥) for satisfiable F

Security Claims of 128-bit SipHash
Forging a previously unseen pair (x ,SK (x)) succeeds with probability 2−128 ≈ 10−38.
Recovering K succeeds with probability 2−128.

Intuition: Inadvertent bugs / errors / faults during solving “can’t do better” than deliberate attacks!

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Confidence

What breaks our approach?

Obtain S(⊥) for satisfiable FFind (c ,S(c))
where c is unsound w.r.t. F

: “enables”

Security Claims of 128-bit SipHash
Forging a previously unseen pair (x ,SK (x)) succeeds with probability 2−128 ≈ 10−38.
Recovering K succeeds with probability 2−128.

Intuition: Inadvertent bugs / errors / faults during solving “can’t do better” than deliberate attacks!

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Confidence

What breaks our approach?

Obtain S(⊥) for satisfiable FFind (c ,S(c))

Forge unseen pair (x ,S(x))
for some chosen x

where c is unsound w.r.t. F

: “enables”

Security Claims of 128-bit SipHash
Forging a previously unseen pair (x ,SK (x)) succeeds with probability 2−128 ≈ 10−38.
Recovering K succeeds with probability 2−128.

Intuition: Inadvertent bugs / errors / faults during solving “can’t do better” than deliberate attacks!

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Confidence

What breaks our approach?

Obtain S(⊥) for satisfiable F

Find F ′ ̸≡ F with S(F ′) = S(F)

Find (c ,S(c))

Forge unseen pair (x ,S(x))
for some chosen x

where c is unsound w.r.t. F

: “enables”

Security Claims of 128-bit SipHash
Forging a previously unseen pair (x ,SK (x)) succeeds with probability 2−128 ≈ 10−38.
Recovering K succeeds with probability 2−128.

Intuition: Inadvertent bugs / errors / faults during solving “can’t do better” than deliberate attacks!

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Confidence

What breaks our approach?

Obtain S(⊥) for satisfiable FRecover K

Find F ′ ̸≡ F with S(F ′) = S(F)

Find (c ,S(c))

Forge unseen pair (x ,S(x))
for some chosen x

where c is unsound w.r.t. F

: “enables”

Security Claims of 128-bit SipHash
Forging a previously unseen pair (x ,SK (x)) succeeds with probability 2−128 ≈ 10−38.
Recovering K succeeds with probability 2−128.

Intuition: Inadvertent bugs / errors / faults during solving “can’t do better” than deliberate attacks!

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Confidence

What breaks our approach?

Obtain S(⊥) for satisfiable FRecover K

Find F ′ ̸≡ F with S(F ′) = S(F)

Find (c ,S(c))

Forge unseen pair (x ,S(x))
for some chosen x

where c is unsound w.r.t. F

: “enables”

Security Claims of 128-bit SipHash
Forging a previously unseen pair (x ,SK (x)) succeeds with probability 2−128 ≈ 10−38.
Recovering K succeeds with probability 2−128.

Intuition: Inadvertent bugs / errors / faults during solving “can’t do better” than deliberate attacks!

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Confidence

What breaks our approach?

Obtain S(⊥) for satisfiable FRecover K

Find F ′ ̸≡ F with S(F ′) = S(F)

Find (c ,S(c))

Forge unseen pair (x ,S(x))
for some chosen x

where c is unsound w.r.t. F

: “enables”

Security Claims of 128-bit SipHash
Forging a previously unseen pair (x ,SK (x)) succeeds with probability 2−128 ≈ 10−38.
Recovering K succeeds with probability 2−128.

Intuition: Inadvertent bugs / errors / faults during solving “can’t do better” than deliberate attacks!

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Confidence

Implementation

Distributed framework: MALLOBSAT [SS24]

Sequential solver: CADICAL with LRAT output [PFB23]

Trusted modules: Parser, checker, confirmer
Confirmer takes F and S(⊥), validates S(⊥)
Overall ≈ 1k effective lines of C99 code

Setup
≤ 32 compute nodes of HPC cluster HoreKa

Per node: 2×38 cores (76 hardware threads), 256 GB RAM

SAT Competition 2023 benchmarks

Time limits: 300 s wallclock time for solving,
1500 s for postprocessing + checking

10/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Implementation

Monolithic proofs [Mic+23]

1×
76

4×
76

16
×7

6

0

1

2

3

4

5

6

7

R
el

at
iv

e
ov

er
h

ea
d

(252∗)(271∗)(280∗)

ST

1×
76

4×
76

16
×7

6

0
1
2
3
4
5

10

15

(133) (146∗)(141∗)

TuP

1×
76

4×
76

16
×7

6

0

5

10

20

30

40

50
(132) (132) (127∗)

TuV†
On-the-fly checking

1×
76

4×
76

16
×7

6

32
×7

6

0.0
0.5
1.0
1.5
2.0

3.0

4.0

5.0

6.0

7.0

R
el

at
iv

e
ov

er
h

ea
d

(254∗) (268∗) (278) (280∗)

ST (=TuV)

Overhead relative to solving time w/o LRAT outputs · ST: Solving time · TuP: Time until Proof present · TuV: Time until Validation done
∗some data outside of displayed domain

· †Data extrapolated

11/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Overhead Relative to Proof-free Solving

Monolithic proofs [Mic+23]

1×
76

4×
76

16
×7

6

0

1

2

3

4

5

6

7

R
el

at
iv

e
ov

er
h

ea
d

(252∗)(271∗)(280∗)

ST

1×
76

4×
76

16
×7

6
0
1
2
3
4
5

10

15

(133) (146∗)(141∗)

TuP

1×
76

4×
76

16
×7

6

0

5

10

20

30

40

50
(132) (132) (127∗)

TuV†
On-the-fly checking

1×
76

4×
76

16
×7

6

32
×7

6

0.0
0.5
1.0
1.5
2.0

3.0

4.0

5.0

6.0

7.0

R
el

at
iv

e
ov

er
h

ea
d

(254∗) (268∗) (278) (280∗)

ST (=TuV)

Overhead relative to solving time w/o LRAT outputs · ST: Solving time · TuP: Time until Proof present · TuV: Time until Validation done
∗some data outside of displayed domain

· †Data extrapolated

11/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Overhead Relative to Proof-free Solving

Monolithic proofs [Mic+23]

1×
76

4×
76

16
×7

6

0

1

2

3

4

5

6

7

R
el

at
iv

e
ov

er
h

ea
d

(252∗)(271∗)(280∗)

ST

1×
76

4×
76

16
×7

6
0
1
2
3
4
5

10

15

(133) (146∗)(141∗)

TuP

1×
76

4×
76

16
×7

6

0

5

10

20

30

40

50
(132) (132) (127∗)

TuV†

On-the-fly checking

1×
76

4×
76

16
×7

6

32
×7

6

0.0
0.5
1.0
1.5
2.0

3.0

4.0

5.0

6.0

7.0

R
el

at
iv

e
ov

er
h

ea
d

(254∗) (268∗) (278) (280∗)

ST (=TuV)

Overhead relative to solving time w/o LRAT outputs · ST: Solving time · TuP: Time until Proof present · TuV: Time until Validation done
∗some data outside of displayed domain · †Data extrapolated

11/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Overhead Relative to Proof-free Solving

Monolithic proofs [Mic+23]

1×
76

4×
76

16
×7

6

0

1

2

3

4

5

6

7

R
el

at
iv

e
ov

er
h

ea
d

(252∗)(271∗)(280∗)

ST

1×
76

4×
76

16
×7

6
0
1
2
3
4
5

10

15

(133) (146∗)(141∗)

TuP

1×
76

4×
76

16
×7

6

0

5

10

20

30

40

50
(132) (132) (127∗)

TuV†
On-the-fly checking

1×
76

4×
76

16
×7

6

32
×7

6

0.0
0.5
1.0
1.5
2.0

3.0

4.0

5.0

6.0

7.0

R
el

at
iv

e
ov

er
h

ea
d

(254∗) (268∗) (278) (280∗)

ST (=TuV)

Overhead relative to solving time w/o LRAT outputs · ST: Solving time · TuP: Time until Proof present · TuV: Time until Validation done
∗some data outside of displayed domain · †Data extrapolated

11/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Overhead Relative to Proof-free Solving

✓ Generic framework
Requires LRAT-producing solver backends
Independent of structure, implementation of clause exchange

✓ Extended to checking satisfying assignments
One checker per solver process needs to remember all original problem clauses

✓ Works with malleable scheduling, i.e., with fluctuating set of workers
! High memory usage (+60% compared to proof-less solving)

Compressing clauses in checkers?
Parallel checking code with shared clause database?

? Formal verification of trusted processes? Cooperation wanted!
Would result in first verified distributed SAT solver (in terms of correctness, not termination)
Extend projects like cake_lpr [THM23]? Efficient enough?
Verify (parts of) C99 codebase? BMC? Verified compilation?

12/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Discussion

✓ Generic framework
Requires LRAT-producing solver backends
Independent of structure, implementation of clause exchange

✓ Extended to checking satisfying assignments
One checker per solver process needs to remember all original problem clauses

✓ Works with malleable scheduling, i.e., with fluctuating set of workers

! High memory usage (+60% compared to proof-less solving)
Compressing clauses in checkers?
Parallel checking code with shared clause database?

? Formal verification of trusted processes? Cooperation wanted!
Would result in first verified distributed SAT solver (in terms of correctness, not termination)
Extend projects like cake_lpr [THM23]? Efficient enough?
Verify (parts of) C99 codebase? BMC? Verified compilation?

12/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Discussion

✓ Generic framework
Requires LRAT-producing solver backends
Independent of structure, implementation of clause exchange

✓ Extended to checking satisfying assignments
One checker per solver process needs to remember all original problem clauses

✓ Works with malleable scheduling, i.e., with fluctuating set of workers
! High memory usage (+60% compared to proof-less solving)

Compressing clauses in checkers?
Parallel checking code with shared clause database?

? Formal verification of trusted processes? Cooperation wanted!
Would result in first verified distributed SAT solver (in terms of correctness, not termination)
Extend projects like cake_lpr [THM23]? Efficient enough?
Verify (parts of) C99 codebase? BMC? Verified compilation?

12/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Discussion

✓ Generic framework
Requires LRAT-producing solver backends
Independent of structure, implementation of clause exchange

✓ Extended to checking satisfying assignments
One checker per solver process needs to remember all original problem clauses

✓ Works with malleable scheduling, i.e., with fluctuating set of workers
! High memory usage (+60% compared to proof-less solving)

Compressing clauses in checkers?
Parallel checking code with shared clause database?

? Formal verification of trusted processes? Cooperation wanted!
Would result in first verified distributed SAT solver (in terms of correctness, not termination)
Extend projects like cake_lpr [THM23]? Efficient enough?
Verify (parts of) C99 codebase? BMC? Verified compilation?

12/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Discussion

Bottleneck-free approach to on-the-fly proof checking
for distributed clause-sharing solving

Trusted parties: Isolated parser and checker processes,
extending usual LRAT checking interface

Saves an order of magnitude in running time overhead
over explicit proof production

Paves the road to verified distributed SAT solving

github.com/domschrei/impcheck

Confidence

Pe
rfo

rm
an

ce

Proof-free parallel [SS24]

Sequential solving +

Parallel proof prod. +

verified checking [THM23]

Sequential solving +
fast checking [PFB23]

fast checking [Mic+23]

Parallel on-the-fly

Parallel verified
on-the-fly checking?

checking [here]

Verified solving [Fle19]

13/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Conclusion

github.com/domschrei/impcheck

[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. “SipHash: a fast short-input PRF”. In: International Conference on Cryptology in India.
Springer. 2012, pp. 489–508. DOI: 10.1007/978-3-642-34931-7_28.

[FB22] Mathias Fleury and Armin Biere. “Scalable Proof Producing Multi-Threaded SAT Solving with Gimsatul through Sharing instead of Copying
Clauses”. In: Pragmatics of SAT. 2022.

[Fle19] Mathias Fleury. “Optimizing a verified SAT solver”. In: NASA Formal Methods: 11th International Symposium, NFM 2019, Houston, TX, USA,
May 7–9, 2019, Proceedings 11. Springer. 2019, pp. 148–165.

[HMP14] Marijn J. H. Heule, Norbert Manthey, and Tobias Philipp. “Validating Unsatisfiability Results of Clause Sharing Parallel SAT Solvers.”. In:
Pragmatics of SAT. 2014, pp. 12–25. DOI: 10.29007/6vwg.

[Mic+23] Dawn Michaelson et al. “Unsatisfiability proofs for distributed clause-sharing SAT solvers”. In: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer. 2023, pp. 348–366. DOI: 10.1007/978-3-031-30823-9_18.

[PFB23] Florian Pollitt, Mathias Fleury, and Armin Biere. “Faster LRAT checking than solving with CaDiCaL”. In: Theory and Applications of Satisfiability
Testing (SAT). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. DOI: 10.4230/LIPIcs.SAT.2023.21.

[SS24] Dominik Schreiber and Peter Sanders. “MALLOBSAT: Scalable SAT Solving by Clause Sharing”. In: Journal of Artificial Intelligence Research
(JAIR) (2024). In press.

[THM23] Yong Kiam Tan, Marijn J. H. Heule, and Magnus Myreen. “Verified LRAT and LPR Proof Checking with cake_lpr”. In: SAT Competition. 2023,
p. 89. URL: https://researchportal.helsinki.fi/files/269128852/sc2023_proceedings.pdf.

14/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

References

https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.29007/6vwg
https://doi.org/10.1007/978-3-031-30823-9_18
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://researchportal.helsinki.fi/files/269128852/sc2023_proceedings.pdf

Bottleneck: sequential assembly and checking of monolithic proof

Throttled by I/O bandwidth at final process

Sometimes hundreds of Gigabytes of proof information

Proof production + checking @ 1520 cores takes ≈ 3× solving time
(latest setup – submitted to JAR)

Intuition “If solving fits into RAM, checking will as well ” no longer holds

Our aim: Make checking scalable by dropping requirement
of a single, persistent proof

Clauses derived during solving

Solving

E
la

ps
ed

tim
e

Proof tracing

Processing, checking

+ combination

+ proof logging

15/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Intrinsic Scalability Issues

Bottleneck: sequential assembly and checking of monolithic proof

Throttled by I/O bandwidth at final process

Sometimes hundreds of Gigabytes of proof information

Proof production + checking @ 1520 cores takes ≈ 3× solving time
(latest setup – submitted to JAR)

Intuition “If solving fits into RAM, checking will as well ” no longer holds

Our aim: Make checking scalable by dropping requirement
of a single, persistent proof

Clauses derived during solving

Solving

E
la

ps
ed

tim
e

Proof tracing

Processing, checking

Solving with
on-the-fly checking

+ combination

+ proof logging

Clauses derived during solving

E
la

ps
ed

tim
e

15/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Intrinsic Scalability Issues

Estimated (2007) probability of dying due to a local comet/asteroid impact: 1 in 5 700 0001
1http://www.boulder.swri.edu/clark/binhaz07.ppt

Average human life span estimate (conservative): 80 years
Probability of such an impact per millisecond: 1 in 5 700 000 · (80 · 365 · 24 · 3600 · 1000) ≈ 1.4 · 10−19

Two unrelated impacts in the same millisecond: 10−19 · 10−19 = 10−38 ≈ 2−128

. . .

1 millisecond computation

Same argument with cosmic radiation flipping two particular bytes (prob. 10−15 per byte per sec.),
causing a formally verified checker to hallucinate unsatisfiability

16/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

The (Un)Likelihood of 2−128

http://www.boulder.swri.edu/clark/binhaz07.ppt

Estimated (2007) probability of dying due to a local comet/asteroid impact: 1 in 5 700 0001
1http://www.boulder.swri.edu/clark/binhaz07.ppt

Average human life span estimate (conservative): 80 years
Probability of such an impact per millisecond: 1 in 5 700 000 · (80 · 365 · 24 · 3600 · 1000) ≈ 1.4 · 10−19

Two unrelated impacts in the same millisecond: 10−19 · 10−19 = 10−38 ≈ 2−128

. . .

1 millisecond computation

Same argument with cosmic radiation flipping two particular bytes (prob. 10−15 per byte per sec.),
causing a formally verified checker to hallucinate unsatisfiability

16/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

The (Un)Likelihood of 2−128

http://www.boulder.swri.edu/clark/binhaz07.ppt

Estimated (2007) probability of dying due to a local comet/asteroid impact: 1 in 5 700 0001
1http://www.boulder.swri.edu/clark/binhaz07.ppt

Average human life span estimate (conservative): 80 years
Probability of such an impact per millisecond: 1 in 5 700 000 · (80 · 365 · 24 · 3600 · 1000) ≈ 1.4 · 10−19

Two unrelated impacts in the same millisecond: 10−19 · 10−19 = 10−38 ≈ 2−128

. . .

1 millisecond computation

Same argument with cosmic radiation flipping two particular bytes (prob. 10−15 per byte per sec.),
causing a formally verified checker to hallucinate unsatisfiability

16/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

The (Un)Likelihood of 2−128

http://www.boulder.swri.edu/clark/binhaz07.ppt

Protocol realized via named pipes:

init(sig: Signature) → void

load(formula: ClauseSet) → void

end_load() → bool

produce(id: ID, lits: Clause, hints: IDList, share: bool)

→ (bool, Signature?)

import(id: ID, lits: Clause, sig: Signature) → bool

delete(ids: IDList) → bool

validate_unsat() → (bool, Signature?)

terminate() → void

INITIALIZING VALID

INVALID TERMINATED

init

load

end load

end load

validate unsat
delete
import
produce

validate unsat

terminate

terminate

produce
import
delete

*

terminate

17/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Checker Interface

1 node (76 cores)

10−1 100 101 102

Solving time of M-nt [s]

10−1

100

101

102

S
ol

v
in

g
ti

m
e

o
f

M
-I

m
p
C

h
k

[s
]

32 nodes (2432 cores)

10−1 100 101 102

Solving time of M-nt [s]

10−1

100

101

102

S
ol

v
in

g
ti

m
e

o
f

M
-I

m
p
C

h
k

[s
]

M-NT: MALLOBSAT+CADICAL, no LRAT output · M-IMPCHK: MALLOBSAT+CADICAL + on-the-fly checking

18/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Results: Solving Time Overhead

0 60 120 180 240 300

Solving time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤
t

32×76 nt
32×76 ImpChk
16×76 nt
16×76 ImpChk
4×76 nt
4×76 Proof
4×76 ImpChk
1×76 nt
1×76 Proof
1×76 ImpChk
1×76 Gims.
1×38 Gims.

19/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Results: Solving Times (w/o Assembly, Checking)

