

New Pruning Rules for Optimal Task Scheduling on Identical Parallel Machines

SPAA 2024, Nantes

Matthew Akram, Dominik Schreiber | June 18, 2024

www.kit.edu

m = 4 processors

n = 10 jobs j_1, j_2, \ldots, j_n

n job durations $W = \{11, 9, 8, 7, 7, 6, 6, 4, 4, 3\}$

m = 4 processors

n = 10 jobs j_1, j_2, \dots, j_n n job durations $W = \{11, 9, 8, 7, 7, 6, 6, 4, 4, 3\}$

m = 4 processors

n = 10 jobs j_1, j_2, \dots, j_n n job durations $W = \{11, 9, 8, 7, 7, 6, 6, 4, 4, 3\}$

m = 4 processors n = 10 jobs j_1, j_2, \dots, j_n

n job durations $W = \{11, 9, 8, 7, 7, 6, 6, 4, 4, 3\}$

m = 4 processors n = 10 jobs j_1, j_2, \dots, j_n n job durations $W = \{11, 9, 8, 7, 7, 6, 6, 4, 4, 3\}$

m = 4 processors n = 10 jobs j_1, j_2, \dots, j_n n job durations $W = \{11, 9, 8, 7, 7, 6, 6, 4, 4, 3\}$

m = 4 processors n = 10 jobs j_1, j_2, \ldots, j_n Branch *n* job durations $W = \{11, 9, 8, 7, 7, 6, 6, 4, 4, 3\}$ time orocessors 11 4 9 6 8 6 4 Bound **Pruning rules** 7 3 = Dominance criteria Minimize $C_{max} = 18$

The function ϕ

 $\phi(j_i, \ell)$ denotes all subsets of j_i, \ldots, j_n which still fit onto a processor with load ℓ .

The function ϕ

 $\phi(j_i, \ell)$ denotes all subsets of j_i, \ldots, j_n which still fit onto a processor with load ℓ .

The function ϕ

 $\phi(j_i, \ell)$ denotes all subsets of j_i, \ldots, j_n which still fit onto a processor with load ℓ .

Pruning Rule 4

Consider two processors with loads ℓ, ℓ' . If $\phi(j_i, \ell) = \phi(j_i, \ell')$, then only one processor needs to be considered.

Pruning Rule 4

The function ϕ

Consider two processors with loads ℓ, ℓ' . If $\phi(j_i, \ell) = \phi(j_i, \ell')$, then only one processor needs to be considered.

 $\phi(j_i, \ell)$ denotes all subsets of j_i, \ldots, j_n which still fit onto a processor with load ℓ .

Pruning Rule 5 (The Fill-Up-Rule, FUR)

Consider processor *x* with load ℓ and the largest job j_i which still fits onto *x*.

If the duration of j_i dominates the duration of any job set in $\phi(j_i, \ell)$, we can always just assign j_i to *x*.

Results

Implementation

Branch-and-bound algorithm maintaining a $\mathcal{O}(U \cdot n)$ space lookup table for checking ϕ set equivalencies

Results

Implementation

Branch-and-bound algorithm maintaining a $\mathcal{O}(U \cdot n)$ space lookup table for checking ϕ set equivalencies

Evaluation

- 3500 instances by Mrad & Souayah, $n/m \in [2,3]$
- Baseline \rightarrow R4: +13% solved, -44% explored nodes
- $\blacksquare \ \ \mathsf{R4} \to \mathsf{R4+5}: \qquad \texttt{+99\% solved, -97\% explored nodes}$
- Outperforms state-of-the-art ILP approach for large makespans